启程Python机器学习之旅:从JupyterLab到神经网络初探

引言

在数据科学和人工智能的浪潮中,Python已经成为最受欢迎的编程语言之一。其简洁的语法和强大的库支持,使得从科研到商业的各个领域都能见到Python的身影。今天,我们将通过JupyterLab------一个交互式的开发环境,开始我们的Python机器学习编程之旅。

JupyterLab:交互式学习的利器

JupyterLab是一个基于Web的交互式开发环境,它允许我们撰写和运行代码,并将文本、方程式、图像和视频等内容整合在一起。通过JupyterLab,我们可以轻松地探索数据、开发机器学习模型,并以一种有组织的方式展示我们的工作。

初识JupyterLab

在JupyterLab中,我们可以通过文件浏览器打开和编辑文件,使用终端窗口执行命令,并通过笔记本编写和运行代码。每个笔记本由一系列的单元组成,这些单元可以包含代码、文本、方程式等。

运行第一个Python代码

为了确保我们的环境配置正确,让我们先运行一个简单的Python代码来打印一条消息。

python 复制代码
# Highlight this cell and click [Shift+Enter] to execute
print('This is just a simple print statement')

清理GPU内存:为深度学习做准备

在使用深度学习模型时,GPU资源是非常宝贵的。有时我们需要清理GPU内存,以确保实验可以顺利进行。在JupyterLab中,我们可以通过两种方式来清理GPU内存:

  1. 使用界面上方的⟳按钮来重置GPU状态。
  2. 通过运行以下代码单元来关闭当前的内核,并释放GPU资源。
python 复制代码
import IPython
app = IPython.Application.instance()
app.kernel.do_shutdown(True)

神经网络的"Hello World":手写数字识别

在熟悉了JupyterLab的基本操作后,我们将执行深度学习的"Hello World"练习------训练一个神经网络来识别手写数字。这个练习将引导我们通过构建和训练一个简单的神经网络模型,来了解机器学习的基本流程,敬请期待。

结语

通过这篇博客,我们不仅学会了如何在JupyterLab中进行基本的Python编程,还为接下来的机器学习之旅做好了准备。在接下来的系列博客中,我们将深入探索更多的机器学习概念和应用,敬请期待!

相关推荐
YiSLWLL5 分钟前
Tauri2+Leptos开发桌面应用--绘制图形、制作GIF动画和mp4视频
python·rust·ffmpeg·音视频·matplotlib
数据馅8 分钟前
python自动生成pg数据库表对应的es索引
数据库·python·elasticsearch
编程、小哥哥22 分钟前
python操作mysql
android·python
Serendipity_Carl23 分钟前
爬虫基础之爬取某站视频
爬虫·python·pycharm
2401_8904167130 分钟前
Recaptcha2 图像怎么识别
人工智能·python·django
杰九35 分钟前
我的世界(Minecraft)计算器python源码
python·开源·游戏程序
Channing Lewis1 小时前
python如何使得pdf加水印后的大小尽可能小
开发语言·python·pdf
一叶_障目1 小时前
机器学习之决策树(DecisionTree——C4.5)
人工智能·决策树·机器学习
_.Switch1 小时前
Python Web开发:使用FastAPI构建视频流媒体平台
开发语言·前端·python·微服务·架构·fastapi·媒体
草明2 小时前
Mongodb 慢查询日志分析 - 1
数据库·python·mongodb