【Spring AI】02. 嵌入向量 API

文章目录

嵌入向量 API

EmbeddingClient 接口旨在与人工智能和机器学习中的嵌入向量模型进行直接集成。其主要功能是将文本转换为数字向量,通常称为嵌入向量。这些嵌入向量对于诸如语义分析和文本分类等各种任务至关重要。

EmbeddingClient 接口的设计围绕着两个主要目标展开:

  • 可移植性:该接口确保在各种嵌入向量模型之间轻松适应。它允许开发人员在不进行大量代码更改的情况下,轻松切换不同的嵌入向量技术或模型。这种设计符合 Spring 的模块化和可互换性理念。
  • 简单性:EmbeddingClient 简化了将文本转换为嵌入向量的过程。通过提供像embed(String text)和embed(Document document)这样直接的方法,消除了处理原始文本数据和嵌入算法的复杂性。这种设计使开发人员在他们的应用程序中更容易地利用嵌入向量,特别是那些对人工智能新手而言,因为无需深入了解底层机制。

API 概述


嵌入向量 API 建立在通用的 Spring AI Model API 之上,这是 Spring AI 库的一部分。因此,EmbeddingClient 接口扩展了 ModelClient 接口,该接口提供了一套标准方法,用于与 AI 模型进行交互。 EmbeddingRequest 和 EmbeddingResponse 类分别扩展自 ModelRequest 和 ModelResponse ,用于分别封装嵌入向量模型的输入和输出。

嵌入向量 API 反过来被更高级的组件使用,为特定的嵌入向量模型实现嵌入向量客户端,例如 OpenAI、Titan、Azure OpenAI、Ollie 等。

以下图示了嵌入向量 API 与 Spring AI 模型 API 和嵌入客户端之间的关系:

EmbeddingClient

本节提供了有关 EmbeddingClient 接口及相关类的指南。

java 复制代码
public interface EmbeddingClient extends ModelClient<EmbeddingRequest, EmbeddingResponse> {

	@Override
	EmbeddingResponse call(EmbeddingRequest request);


	/**
	 * Embeds the given document's content into a vector.
	 * @param document the document to embed.
	 * @return the embedded vector.
	 */
	List<Double> embed(Document document);

	/**
	 * Embeds the given text into a vector.
	 * @param text the text to embed.
	 * @return the embedded vector.
	 */
	default List<Double> embed(String text) {
		Assert.notNull(text, "Text must not be null");
		return this.embed(List.of(text)).iterator().next();
	}

	/**
	 * Embeds a batch of texts into vectors.
	 * @param texts list of texts to embed.
	 * @return list of list of embedded vectors.
	 */
	default List<List<Double>> embed(List<String> texts) {
		Assert.notNull(texts, "Texts must not be null");
		return this.call(new EmbeddingRequest(texts, EmbeddingOptions.EMPTY))
			.getResults()
			.stream()
			.map(Embedding::getOutput)
			.toList();
	}

	/**
	 * Embeds a batch of texts into vectors and returns the {@link EmbeddingResponse}.
	 * @param texts list of texts to embed.
	 * @return the embedding response.
	 */
	default EmbeddingResponse embedForResponse(List<String> texts) {
		Assert.notNull(texts, "Texts must not be null");
		return this.call(new EmbeddingRequest(texts, EmbeddingOptions.EMPTY));
	}

	/**
	 * @return the number of dimensions of the embedded vectors. It is generative
	 * specific.
	 */
	default int dimensions() {
		return embed("Test String").size();
	}

}

嵌入方法提供了各种方法,用于将文本转换为嵌入向量,支持单个字符串、结构化Document对象或文本批处理。

提供了多个快捷嵌入文本的方法,包括embed(String text)方法,该方法接受单个字符串并返回相应的嵌入向量。所有快捷方式都围绕call方法实现,这是调用嵌入模型的主要方法。

通常嵌入返回一组双精度数,表示嵌入数值向量格式。

embedForResponse方法提供了更全面的输出,可能包括有关嵌入向量的其他信息。

dimensions 方法是开发人员快速确定嵌入向量大小的便捷工具,这对于理解嵌入空间和后续处理步骤非常重要。

EmbeddingRequest

EmbeddingRequest 是一个接受 文本对象列表 和 可选嵌入请求选项 的类。以下显示了 EmbeddingRequest 类的缩略版本,不包括构造函数和其他实用方法:

java 复制代码
public class EmbeddingRequest implements ModelRequest<List<String>> {
	private final List<String> inputs;
	private final EmbeddingOptions options;
	// other methods omitted
}
EmbeddingResponse

EmbeddingResponse 类的结构如下:

java 复制代码
public class EmbeddingResponse implements ModelResponse<Embedding> {

	private List<Embedding> embeddings;
	private EmbeddingResponseMetadata metadata = new EmbeddingResponseMetadata();
	// other methods omitted
}

EmbeddingResponse类保存了AI模型的输出,每个Embedding实例包含来自单个文本的向量数据结果。

EmbeddingResponse类还携带有关 AI 模型响应的EmbeddingResponseMetadata元数据。

Embedding

Embedding 代表一个单独的嵌入向量。

java 复制代码
public class Embedding implements ModelResult<List<Double>> {
	private List<Double> embedding;
	private Integer index;
	private EmbeddingResultMetadata metadata;
	// other methods omitted
}

可用实现

在内部,各种EmbeddingClient实现使用不同的基础库和 API 来执行嵌入任务。以下是一些可用的EmbeddingClient实现:

  • Spring AI Azure OpenAI Embeddings
  • Spring AI Ollama Embeddings
  • Spring AI Transformers (ONNX) Embeddings
  • Spring AI PostgresML Embeddings
  • Spring AI Bedrock Cohere Embeddings
  • Spring AI Bedrock Titan Embeddings
  • Spring AI VertexAI PaLM2 Embeddings
  • Spring AI Mistral AI Embeddings
相关推荐
phoenix@Capricornus9 分钟前
样本与样本值
人工智能·机器学习·概率论
讲师-汪春波10 分钟前
【无标题】
人工智能
RockHopper202519 分钟前
利用数字孪生技术打造智能工厂的“情境认知”能力
人工智能·智能制造·数字孪生·智能工厂
喵叔哟32 分钟前
8. 从0到上线:.NET 8 + ML.NET LTR 智能类目匹配实战--规则回退与可解释性:四层策略如何兜底
人工智能·深度学习·.net
微软技术栈33 分钟前
Microsoft AI Genius | 用智能 Microsoft Copilot 副驾驶® 构建高韧性 DevOps 流程
人工智能·microsoft·copilot
茶杯6751 小时前
GraphRAG产品赋能企业智能升级:创邻科技知寰Hybrid RAG的四大核心应用场景深度解析
人工智能·科技·graphrag产品
少林and叔叔1 小时前
基于yolov5.7.0的人工智能算法的下载、开发环境搭建(pycharm)与运行测试
人工智能·pytorch·python·yolo·目标检测·pycharm
kuan_li_lyg1 小时前
笛卡尔坐标机器人控制的虚拟前向动力学模型
人工智能·stm32·机器人·机械臂·动力学·运动学·导纳控制
合作小小程序员小小店1 小时前
旧版本附近停车场推荐系统demo,基于python+flask+协同推荐(基于用户信息推荐),开发语言python,数据库mysql,
人工智能·python·flask·sklearn·推荐算法
却道天凉_好个秋1 小时前
OpenCV(十四):绘制直线
人工智能·opencv·计算机视觉