质数是无穷的吗?

质数是无穷的吗?还是存在一个最大的质数,一旦超过这个质数后,每个比它大的数都可以表示为我们已知质数的乘积?欧几里得本人最先提出这个问题,他以一种极其简单而优雅的方式,指出质数有无穷多个,因此并不存在"最大质数"。

为了验证这个问题,我们假设质数的个数是有限的,比如用字母N来表示我们已知的最大质数。现在,让我们将所有已知质数相乘,然后在结果上加1。写法如下:

(1×2×3×5×7×11×13×......×N)+1

这个公式得出的结果当然远远大于所谓的"最大质数"N。但显然,这个数字不能被任何一个质数(小于等于N)整除,因为按照它的构造方式来看,无论它除以哪一个质数,都会余1。

相关推荐
工业3D_大熊5 分钟前
【虚拟仿真】CEETRON SDK在船舶流体与结构仿真中的应用解读
java·python·科技·信息可视化·c#·制造·虚拟现实
lzb_kkk14 分钟前
【JavaEE】JUC的常见类
java·开发语言·java-ee
爬山算法38 分钟前
Maven(28)如何使用Maven进行依赖解析?
java·maven
2401_857439691 小时前
SpringBoot框架在资产管理中的应用
java·spring boot·后端
怀旧6661 小时前
spring boot 项目配置https服务
java·spring boot·后端·学习·个人开发·1024程序员节
李老头探索1 小时前
Java面试之Java中实现多线程有几种方法
java·开发语言·面试
芒果披萨1 小时前
Filter和Listener
java·filter
qq_4924484461 小时前
Java实现App自动化(Appium Demo)
java
阿华的代码王国1 小时前
【SpringMVC】——Cookie和Session机制
java·后端·spring·cookie·session·会话
找了一圈尾巴2 小时前
前后端交互通用排序策略
java·交互