Hive大数据任务调度和业务介绍

目录

一、Zookeeper

1.zookeeper介绍

2.数据模型

3.操作使用

4.运行机制

5.一致性

二、Dolphinscheduler

1.Dolphinscheduler介绍

架构

2.架构说明

该服务内主要包含:

该服务包含:

3.FinalShell主虚拟机启动服务

4.Web网页登录

5.使用

[5-1 安全中心](#5-1 安全中心)

创建队列

添加租户

[5-2 项目管理](#5-2 项目管理)

I-创建项目

II-工作流定义

[5-3 数据中心](#5-3 数据中心)

[5-4 资源中心](#5-4 资源中心)

[5-5 监控中心](#5-5 监控中心)

6.指标分类介绍


一、Zookeeper

1.zookeeper介绍

ZooKeeper是一个具有高可用性的高性能分布式协调服务,主要解决单点故障问题,实现服务的高可用。

官网 ZooKeeper: Because Coordinating Distributed Systems is a Zoo

2.数据模型

zk可存储小文件数据,用来保存其他服务的信息,比如保存hdfs的namenode信息,ds的运行信息
ZooKeeper 维护着一个树形层次结构,树中的节点被称为 znode。znode 可以用于存储数据,并且有一个与之相关联的 ACL。ZooKeeper 被设计用来实现协调服务(这类服务通常使用小数据文件),而不是用于大容量数据存储,因此一个 znode 能存储的数据被限制在1MB以内

3.操作使用

1-登录客户端

复制代码
/opt/cloudera/parcels/CDH-6.2.1-1.cdh6.2.1.p0.1425774/lib/zookeeper/bin/zkCli.sh

查看根节点下子节点有哪些

创建新的节点并指定数据

复制代码
create 节点名(从根节点开始)  数据

查看节点内的数据

复制代码
get 节点名

删除节点及数据

4.运行机制

第一阶段 启动服务,进行领导者选举

所有机器通过一个选择过程来选出一台被称为领导者(leader)的机器,其他的机器被称为跟随者(follower)。一旦半数以上(或指定数量)的跟随者已经将其状态与领导者同步,则表明这个阶段已经完成。

第二阶段 原子广播进行数据读写

所有的写请求都会被转发给领导者,再由领导者将更新广播给跟随者。当半数以上的跟随者已经将修改持久化之后,领导者才会提交这个更新,然后客户端才会收到一个更新成功的响应。这个用来达成共识的协议被设计成具有原子性,因此每个修改要么成功要么失败。
如果领导者出现故障,其余的机器会选出另外一个领导者,并和新的领导者一起继续提供服务。随后,如果之前的领导者恢复正常,会成为一个跟随者。领导者选举的过程是非常快的。

5.一致性

一个跟随者可能滞后于领导者几个更新。这也表明在一个修改被提交之前,只需要集合中半数以上机器已经将该修改持久化则认为更新完成。

对 ZooKeeper 来说,理想的情况就是将客户端都连接到与领导者状态一致的服务器上。

zk能保证数据的最终一致性(要么全部成功,要么全部失败)。

二、Dolphinscheduler

1.Dolphinscheduler介绍

复制代码
官网 https://dolphinscheduler.apache.org/zh-cn

Apache DolphinScheduler 是一个分布式易扩展的可视化DAG工作流任务调度开源系统。适用于企业级场景,提供了一个可视化操作任务、工作流和全生命周期数据处理过程的解决方案。

Apache DolphinScheduler 旨在解决复杂的大数据任务依赖关系,并为应用程序提供数据和各种 OPS 编排中的关系。 解决数据研发ETL依赖错综复杂,无法监控任务健康状态的问题。 DolphinScheduler 以 DAG(Directed Acyclic Graph,DAG)流式方式组装任务,可以及时监控任务的执行状态,支持重试、指定节点恢复失败、暂停、恢复、终止任务等操作。

架构

2.架构说明

  • MasterServer

    MasterServer采用分布式无中心设计理念,MasterServer主要负责 DAG 任务切分、任务提交监控,并同时监听其它MasterServer和WorkerServer的健康状态。 MasterServer服务启动时向Zookeeper注册临时节点,通过监听Zookeeper临时节点变化来进行容错处理。 MasterServer基于netty提供监听服务。

    该服务内主要包含:
    • DistributedQuartz分布式调度组件,主要负责定时任务的启停操作,当quartz调起任务后,Master内部会有线程池具体负责处理任务的后续操作;

    • MasterSchedulerService 是一个扫描线程,定时扫描数据库中的t_ds_command表,根据不同的命令类型进行不同的业务操作;

    • WorkflowExecuteRunnable主要是负责DAG任务切分、任务提交监控、各种不同事件类型的逻辑处理;

    • TaskExecuteRunnable主要负责任务的处理和持久化,并生成任务事件提交到工作流的事件队列;

    • EventExecuteService主要负责工作流实例的事件队列的轮询;

    • StateWheelExecuteThread主要负责工作流和任务超时、任务重试、任务依赖的轮询,并生成对应的工作流或任务事件提交到工作流的事件队列;

    • FailoverExecuteThread主要负责Master容错和Worker容错的相关逻辑;

  • WorkerServer

    WorkerServer也采用分布式无中心设计理念,WorkerServer主要负责任务的执行和提供日志服务。 WorkerServer服务启动时向Zookeeper注册临时节点,并维持心跳。 WorkerServer基于netty提供监听服务。

    该服务包含:
    • WorkerManagerThread主要负责任务队列的提交,不断从任务队列中领取任务,提交到线程池处理;

    • TaskExecuteThread主要负责任务执行的流程,根据不同的任务类型进行任务的实际处理;

    • RetryReportTaskStatusThread主要负责定时轮询向Master汇报任务的状态,直到Master回复状态的ack,避免任务状态丢失;

  • ZooKeeper

    ZooKeeper服务,系统中的MasterServer和WorkerServer节点都通过ZooKeeper来进行集群管理和容错。另外系统还基于ZooKeeper进行事件监听和分布式锁。 我们也曾经基于Redis实现过队列,不过我们希望DolphinScheduler依赖到的组件尽量地少,所以最后还是去掉了Redis实现。

  • AlertServer

    提供告警服务,通过告警插件的方式实现丰富的告警手段。

  • ApiServer接口

    API接口层,主要负责处理前端UI层的请求。该服务统一提供RESTful api向外部提供请求服务。

  • UI

    系统的前端页面,提供系统的各种可视化操作界面。

3.FinalShell主虚拟机启动服务

复制代码
# 启动
sh /export/server/dolphinscheduler/bin/start-all.sh
# 停止
sh /export/server/dolphinscheduler/bin/stop-all.sh

4.Web网页登录

复制代码
http://192.168.88.80:12345/dolphinscheduler/ui/view/login/index.html
账号:admin
密码:dolphinscheduler123

5.使用

5-1 安全中心
创建队列
  • 队列是在执行 spark、mapreduce 等程序,需要用到"队列"参数时使用的。

  • 管理员进入安全中心 -> 队列管理页面,点击"创建队列"按钮,创建队列。

注意:目前仅有 admin 用户可以修改队列。

添加租户
  • 租户对应的是 Linux 的用户,用于 worker 提交作业所使用的用户。如果 linux 没有这个用户,则会导致任务运行失败。你可以通过修改 worker.properties 配置文件中参数 worker.tenant.auto.create=true 实现当 linux 用户不存在时自动创建该用户。worker.tenant.auto.create=true 参数会要求 worker 可以免密运行 sudo 命令

  • 租户编码:租户编码是 Linux上 的用户,唯一,不能重复

  • 管理员进入安全中心->租户管理页面,点击"创建租户"按钮,创建租户。

注意:目前仅有 admin 用户可以修改租户。

5-2 项目管理
I-创建项目
II-工作流定义

进入项目

定义

定义任务1

定义任务2

控制任务执行顺序

保存工作流

上线任务

执行任务

工作流执行实例

查看任务

查看任务日志

5-3 数据中心

数据源中心可以配置各种数据源,包括MySQL/PostgreSQL/Hive/Spark/ClickHouse/Oracle/

SQLServer/DB2等。配置数据源后,在使用SQL类型的任务时,选用不同数据源,就可以直接使用相应类型的SQL了。

这里,配置hive-dws:

创建工作流

注意:如果是查询语句需要配置邮箱服务,当前ds未配置邮箱服务,所以无法执行查询语句

需要公司向第三方邮箱服务器公司申请或者公司自建邮箱服务

非查询语句

复制代码
create table dim.tb_test(id int,name string)
5-4 资源中心

将编写好的代码文件资源交给ds进行保存,定义任务时直接执行文件

定义工作流使用

5-5 监控中心

主要是对系统中的各个服务的健康状况和基本信息的监控和显示

6.指标分类介绍

指标就是最终要计算的数据内容。

指标主要有以下分类: (1)原子指标:

原子指标基于某一业务过程的度量值,是业务定义中不可再 拆解的指标,原子指标的核心功能就是对指标的聚合逻辑进行了 定义。比如 销售额 销量。

(2)派生指标:

派生指标基于原子指标,在原子指标的基础上加了各种限 定。比如 每月销售额 每月每个店铺的销售额。

(3)衍生指标:

衍生指标是在一个或多个派生指标的基础上,通过各种逻辑 运算复合而成的。比如 每月销售的环比增长,每个品类销售额占 比。

相关推荐
Data跳动4 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
woshiabc1115 小时前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎
lucky_syq5 小时前
Saprk和Flink的区别
大数据·flink
lucky_syq5 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
袋鼠云数栈5 小时前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据
清平乐的技术专栏5 小时前
Hive SQL 查询所有函数
hive·hadoop·sql
小白学大数据7 小时前
如何使用Selenium处理JavaScript动态加载的内容?
大数据·javascript·爬虫·selenium·测试工具
15年网络推广青哥7 小时前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
节点。csn8 小时前
Hadoop yarn安装
大数据·hadoop·分布式
不惑_8 小时前
小白入门 · 腾讯云轻量服务器部署 Hadoop 3.3.6
服务器·hadoop·腾讯云