python读取excel数据写入mysql

概述

业务中有时会需要解析excel中的数据,按照要求处理后,写入到db中;

python处理这个正好简便快捷

demo

没有依赖就 pip install pymysql一下

python 复制代码
import pymysql
from pymysql.converters import escape_string
from openpyxl import load_workbook
from Snowflake import Snowflake


def load_excel_data(snowflake):
    # 连接到MySQL数据库
    mydb = pymysql.connect(
        host="xxx.xxx.xxx.xxx",
        port=3306,
        user="xxx",
        passwd="xxx",
        db="xxxx"
    )

    # 打开Excel文件
    wb = load_workbook(filename=r'D:\xx\test.xlsx')
    sheet = wb.active

    # 获取表头
    header = [cell.value for cell in sheet[1]]

    column_header = []
	# 表头转换列名
    for excel_head_name in header:
        if '11' == excel_head_name:
            column_header.append("xx")
        elif '22' == excel_head_name:
            column_header.append("xx")
        elif '33' == excel_head_name:
            column_header.append("xx")
        elif '1122' == excel_head_name:
            column_header.append("xx")


    # 遍历每一行数据,并将其插入到数据库中
    cursor = mydb.cursor()
    count = 0

    defaultUser = "'xxx'"

    for row in sheet.iter_rows(min_row=2, values_only=True):
        cId = snowflake.next_id()

        date = row[0]
        # datetime 转 date
        date = date.date()

        a2 = row[1]
        reason = row[2]
        detail = row[3]
		
		# \'%s\' 将含有特殊内容的字符串整个塞进去
        sql = f"INSERT INTO test_table (id, store_id, num, handler, create_by, update_by, date, a2, reason, detail) VALUES ({cId}, 3, 0, 43, {defaultUser}, {defaultUser}, \'%s\', \'%s\', \'%s\', \'%s\')" % (date, self_escape_string(a2), self_escape_string(reason), self_escape_string(detail))

        print(sql)

        # cursor.execute(sql, row)
        cursor.execute(sql)
        count += 1
        print(f"正在插入{count}条数据")

    # 提交更改并关闭数据库连接
    mydb.commit()
    cursor.close()
    mydb.close()

# 将字符串中的特殊字符转义
# python中没有null只有None
def self_escape_string(data):
    if data is None:
        return ""
    return escape_string(data)



if __name__ == '__main__':
    worker_id = 1
    data_center_id = 1
    snowflake = Snowflake(worker_id, data_center_id)

    load_excel_data(snowflake)

雪花id生成主键

python 复制代码
import time
import random


class Snowflake:
    def __init__(self, worker_id, data_center_id):
        ### 机器标识ID
        self.worker_id = worker_id
        ### 数据中心ID
        self.data_center_id = data_center_id
        ### 计数序列号
        self.sequence = 0
        ### 时间戳
        self.last_timestamp = -1

    def next_id(self):
        timestamp = int(time.time() * 1000)
        if timestamp < self.last_timestamp:
            raise Exception(
                "Clock moved backwards. Refusing to generate id for %d milliseconds" % abs(timestamp - self.last_timestamp))
        if timestamp == self.last_timestamp:
            self.sequence = (self.sequence + 1) & 4095
            if self.sequence == 0:
                timestamp = self.wait_for_next_millis(self.last_timestamp)
        else:
            self.sequence = 0
        self.last_timestamp = timestamp
        return ((timestamp - 1288834974657) << 22) | (self.data_center_id << 17) | (self.worker_id << 12) | self.sequence



    def next_id(self):
        timestamp = int(time.time() * 1000)
        if timestamp < self.last_timestamp:
            raise Exception("Clock moved backwards. Refusing to generate id for %d milliseconds" % abs(timestamp - self.last_timestamp))
        if timestamp == self.last_timestamp:
            self.sequence = (self.sequence + 1) & 4095
            if self.sequence == 0:
                timestamp = self.wait_for_next_millis(self.last_timestamp)
        else:
            self.sequence = 0
        self.last_timestamp = timestamp
        return ((timestamp - 1288834974657) << 22) | (self.data_center_id << 17) | (self.worker_id << 12) | self.sequence

    def wait_for_next_millis(self, last_timestamp):
        timestamp = int(time.time() * 1000)
        while timestamp <= last_timestamp:
            timestamp = int(time.time() * 1000)
        return timestamp
相关推荐
抛砖者2 小时前
1、Ubuntu上MySQL安装,密码设置,远程访问,端口修改
mysql·ubuntu
G探险者2 小时前
为什么 VARCHAR(1000) 存不了 1000 个汉字? —— 详解主流数据库“字段长度”的底层差异
数据库·后端·mysql
百锦再2 小时前
第18章 高级特征
android·java·开发语言·后端·python·rust·django
源码之家2 小时前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask
SalvoGao2 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
楚疏笃3 小时前
纯Python 实现 Word 文档转换 Markdown
python·word
j***82703 小时前
【玩转全栈】----Django连接MySQL
android·mysql·django
谅望者3 小时前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论
Boilermaker19923 小时前
【MySQL】备份与恢复
数据库·mysql
mortimer3 小时前
【实战复盘】 PySide6 + PyTorch 偶发性“假死”?由多线程转多进程
pytorch·python·pyqt