半监督语义分割学习笔记

目录

[partial cross entropy loss](#partial cross entropy loss)


GitHub - LiheYoung/UniMatch: [CVPR 2023] Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation

partial cross entropy loss

python 复制代码
import torch
import torch.nn.functional as F

def partial_cross_entropy_loss(inputs, targets, ignore_index=-1):
    """
    自定义部分交叉熵损失函数,忽略 ignore_index 指定的标签。
    
    :param inputs: 模型的输出,形状应为 (N, C, H, W),其中 N 是批量大小,C 是类别数,H 和 W 是高度和宽度。
    :param targets: 真实的标签,形状应为 (N, H, W)。
    :param ignore_index: 要忽略的标签值,默认为 -1。
    :return: 计算得到的损失。
    """
    # 计算 log softmax
    log_probs = F.log_softmax(inputs, dim=1)
    
    # 将 log_probs 和 targets 转换为适合 gather 的形状
    log_probs = log_probs.permute(0, 2, 3, 1)  # (N, H, W, C)
    log_probs = log_probs.reshape(-1, log_probs.shape[-1])  # (N*H*W, C)
    targets = targets.view(-1)  # (N*H*W)
    
    # 掩码未标记的数据点
    mask = targets != ignore_index
    log_probs = log_probs[mask]
    targets = targets[mask]
    
    # 只计算有标签的数据点的损失
    loss = F.nll_loss(log_probs, targets, reduction='mean')
    
    return loss
python 复制代码
# 假设模型的输出和真实标签
outputs = torch.randn(2, 3, 5, 5)  # 随机生成模拟输出(2个样本,3个类别,5x5的图像)
targets = torch.tensor([[[-1, 1, -1, 0, -1], 
                         [1, -1, 2, 2, 1], 
                         [-1, -1, 1, -1, 0], 
                         [2, 2, 2, -1, 1], 
                         [-1, 0, -1, 0, 1]], 
                        [[1, 0, -1, 1, -1], 
                         [2, 2, -1, 0, 0], 
                         [-1, 1, 1, 0, -1], 
                         [0, 0, 2, -1, 1], 
                         [2, -1, 0, -1, -1]]])  # 生成带有未标记区域的标签

# 计算损失
loss = partial_cross_entropy_loss(outputs, targets)
print(f"Loss: {loss.item()}")
相关推荐
抓饼先生19 分钟前
Linux control group笔记
linux·笔记·bash
ue星空23 分钟前
月2期学习笔记
学习·游戏·ue5
搞一搞汽车电子32 分钟前
S32K3平台eMIOS 应用说明
开发语言·驱动开发·笔记·单片机·嵌入式硬件·汽车
萧邀人32 分钟前
第二课、熟悉Cocos Creator 编辑器界面
学习
m0_571372821 小时前
嵌入式ARM架构学习2——汇编
arm开发·学习
大筒木老辈子1 小时前
Linux笔记---封装套接字
笔记
AlexMercer10122 小时前
[前端]1.html基础
前端·笔记·学习·html
楚肽生物小敏2 小时前
Cy3-Tyramide,Cyanine 3 Tyramide; 174961-75-2
笔记
健康平安的活着3 小时前
langchain4j笔记篇(阳哥)
笔记
一川月白7093 小时前
51单片机---硬件学习(跑马灯、数码管、外部中断、按键、蜂鸣器)
单片机·学习·51单片机·外部中断·蜂鸣器·数码管·跑马灯