半监督语义分割学习笔记

目录

[partial cross entropy loss](#partial cross entropy loss)


GitHub - LiheYoung/UniMatch: [CVPR 2023] Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation

partial cross entropy loss

python 复制代码
import torch
import torch.nn.functional as F

def partial_cross_entropy_loss(inputs, targets, ignore_index=-1):
    """
    自定义部分交叉熵损失函数,忽略 ignore_index 指定的标签。
    
    :param inputs: 模型的输出,形状应为 (N, C, H, W),其中 N 是批量大小,C 是类别数,H 和 W 是高度和宽度。
    :param targets: 真实的标签,形状应为 (N, H, W)。
    :param ignore_index: 要忽略的标签值,默认为 -1。
    :return: 计算得到的损失。
    """
    # 计算 log softmax
    log_probs = F.log_softmax(inputs, dim=1)
    
    # 将 log_probs 和 targets 转换为适合 gather 的形状
    log_probs = log_probs.permute(0, 2, 3, 1)  # (N, H, W, C)
    log_probs = log_probs.reshape(-1, log_probs.shape[-1])  # (N*H*W, C)
    targets = targets.view(-1)  # (N*H*W)
    
    # 掩码未标记的数据点
    mask = targets != ignore_index
    log_probs = log_probs[mask]
    targets = targets[mask]
    
    # 只计算有标签的数据点的损失
    loss = F.nll_loss(log_probs, targets, reduction='mean')
    
    return loss
python 复制代码
# 假设模型的输出和真实标签
outputs = torch.randn(2, 3, 5, 5)  # 随机生成模拟输出(2个样本,3个类别,5x5的图像)
targets = torch.tensor([[[-1, 1, -1, 0, -1], 
                         [1, -1, 2, 2, 1], 
                         [-1, -1, 1, -1, 0], 
                         [2, 2, 2, -1, 1], 
                         [-1, 0, -1, 0, 1]], 
                        [[1, 0, -1, 1, -1], 
                         [2, 2, -1, 0, 0], 
                         [-1, 1, 1, 0, -1], 
                         [0, 0, 2, -1, 1], 
                         [2, -1, 0, -1, -1]]])  # 生成带有未标记区域的标签

# 计算损失
loss = partial_cross_entropy_loss(outputs, targets)
print(f"Loss: {loss.item()}")
相关推荐
阿伟来咯~34 分钟前
记录学习react的一些内容
javascript·学习·react.js
Suckerbin1 小时前
Hms?: 1渗透测试
学习·安全·网络安全
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
聪明的墨菲特i1 小时前
Python爬虫学习
爬虫·python·学习
Diamond技术流1 小时前
从0开始学习Linux——网络配置
linux·运维·网络·学习·安全·centos
密码小丑1 小时前
11月4日(内网横向移动(一))
笔记
斑布斑布1 小时前
【linux学习2】linux基本命令行操作总结
linux·运维·服务器·学习
鸭鸭梨吖2 小时前
产品经理笔记
笔记·产品经理
Chef_Chen2 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
齐 飞2 小时前
MongoDB笔记01-概念与安装
前端·数据库·笔记·后端·mongodb