分布式理论--BASE

目录

    • 是什么
    • [BASE 与 CAP,ACID 的区别](#BASE 与 CAP,ACID 的区别)
    • [BASE 和 Paxos 类共识算法的区别](#BASE 和 Paxos 类共识算法的区别)
    • 相关问题

是什么

  • BASE 理论是对 CAP 理论的进一步扩展
  • 主要强调在分布式系统中,为了获得更高的可用性和性能,可以放宽对一致性的要求,是对 CAP 中 AP 方案的一个补充。
  • BA(Basically Available):基本可用,系统在面对分区故障时,允许牺牲部分可用性(比如响应时间延长点,系统的非核心功能暂不可用),并不是不可用。
  • S(Soft State):软状态,允许系统中存在一种软状态(短时间内的数据不一致状态,如果是实时一致则为硬状态)
  • E(Eventual consistency):最终一致性,虽然系统中存在数据不一致的状态,但是经过固定的时间间隔后,必须数据一致。也就是最终必须是一致的。

BASE 与 CAP,ACID 的区别

  • ACID 是事物的基本特性,属于单体系统的范畴,同时由于是本地事务,可以归属于强一致性模型
  • CAP 和 BASE 都是分布式系统的基本理论,BASE 又是 CAP 的进一步发展
  • CAP 中的一致性也可归属到强一致性模型,BASE 可以归属到弱一致性模型,BASE理论面向的是大型高可用、可扩展的分布式系统。

BASE 和 Paxos 类共识算法的区别

  • 一个是描述数据一致性的模型,一个是描述共识的模型
  • 数据一致性的目标是确保系统中的数据副本具有一致的状态,即任何时候任何节点的数据都是一致的。
    共识的目标是在面对部分节点故障或网络分区的情况下,使得系统能够就某个值或顺序达成一致,以保证系统的正确性和可用性

相关问题

  • 数据一致性和共识的区别
  • 强一致性和弱一致性
  • 共识算法
相关推荐
组合缺一21 小时前
OpenSolon v3.9.3, v3.8.5, v3.7.5, v3.6.8 年货版发布
java·人工智能·分布式·ai·llm·solon·mcp
一只鱼丸yo1 天前
分布式系统的心脏:Raft共识算法原理深度解析
分布式·系统架构·共识算法
a285281 天前
分布式WEB应用中会话管理的变迁之路
前端·分布式
玄〤1 天前
RabbitMQ高级篇总结(黑马微服务课day11)(包含黑马商城业务改造)
java·分布式·spring cloud·微服务·架构·rabbitmq
倚肆1 天前
Kafka 生产者与消费者配置详解
java·分布式·后端·kafka
听麟1 天前
HarmonyOS 6.0+ PC端分布式并行计算引擎开发实战:边缘协同场景下的异构资源调度与任务优化
分布式·华为·音视频·harmonyos·政务
The Sheep 20231 天前
Hadoop学习
分布式·kafka
PRINT!1 天前
RabbitMQ实战项目(含代码仓库地址+视频教程地址)基本篇已更新完结,高级篇持续更新中
java·分布式·后端·微服务·rabbitmq
Andy Dennis1 天前
一文了解异步通信基础消息队列之RabbitMQ(一)
分布式·消息队列·rabbitmq·erlang·异步任务
文艺倾年2 天前
【免训练&测试时扩展】通过任务算术转移思维链能力
人工智能·分布式·算法