【气象常用】间断时间序列图

效果图:

主要步骤:

1. 数据准备:随机数组

2. 图像绘制:绘制间断的时间序列

详细代码:着急的直接拖到最后有完整代码

步骤一:导入库包及图片存储路径并设置中文字体为宋体,西文为新罗马(没有的库包要先下好奥)

python 复制代码
###############################################################################
# 导入库包并设置字体
import numpy as np
import matplotlib.pyplot as plt

# 设置西文字体为新罗马字体,中文为宋体,字号为12
from matplotlib import rcParams
config = {
            "font.family": 'serif',
            "font.size": 12,
            "mathtext.fontset": 'stix',
            "font.serif": ['SimSun'],
          }
rcParams.update(config)
rcParams['axes.unicode_minus']=False
datapath = r'H:/00.csdn/01data/'
figpath = r'H:/00.csdn/02fig/'
shppath = r'H:/00.csdn/04shp/cn_shp/Province_9/Province_9.shp'

步骤二:随便生成数组,注意:x比y的个数少(月数-1)个,原因是有(n-1)个衔接(虚线那里)

python 复制代码
###############################################################################
nday1 = 31
nday2 = 30
nday3 = 31
nday4 = 31
# 读入自己的数据
x = range(0, nday1 + nday2 + nday3 + nday4 - 3, 1)
y11 = np.random.randint(-10, 5, (nday1))
y12 = y11 - 0.5
y21 = np.random.randint(10, 15, (nday2))
y22 = y21 + 0.5
y31 = np.random.randint(20, 30, (nday3))
y32 = y31 + 0.5
y41 = np.random.randint(15, 25, (nday4))
y42 = y41 - 0.5

步骤三:绘制图像,主要是控制起始点x位置及x与y的个数匹配,并计算对应个点的真实日期

python 复制代码
###############################################################################
# 画图
fig = plt.figure(figsize=(15, 8))
ax = fig.add_axes([0.1, 0.6, 0.6, 0.4])

ax.plot(x[0:nday1], y11, 'k-', label='OBS')
ax.plot(x[0:nday1], y12, 'k--', label='WRF')
ax.plot(x[nday1-1:nday1+nday2-1], y21, 'k-',)
ax.plot(x[nday1-1:nday1+nday2-1], y22, 'k--',)
ax.plot(x[nday1+nday2-2:nday1+nday2+nday3-2], y31, 'k-',)
ax.plot(x[nday1+nday2-2:nday1+nday2+nday3-2], y32, 'k--',)
ax.plot(x[nday1+nday2+nday3-3:], y41, 'k-',)
ax.plot(x[nday1+nday2+nday3-3:], y42, 'k--',)

ax.set(xlim=(0, 118), 
        xticks=[0, 4, 9, 14, 19, 24, 30, 34, 39, 44, 49, 54, 
                59, 64, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 118], 
        xticklabels=[1, 5, 10, 15, 20, 25, 1, 5, 10, 15, 20, 25, 
                    1, 5, 10, 15, 20, 25, 1, 5, 10, 15, 20, 25, 30],
       
        ylim=(-11, 31), 
        yticks=range(-10, 31, 5),
        yticklabels=range(-10, 31, 5),
        ylabel='Temperature(℃)',)
ax.text(x=0.01, y=1.03, s='T2m_2016_weining(OBS/CTL)', transform=ax.transAxes, fontsize=12)
ax.text(x=0.45, y=-0.21, s='Time(mm/dd)', transform=ax.transAxes, fontsize=12)
ax.text(x=0.00, y=-0.13, s='Jan/', transform=ax.transAxes, fontsize=12)
ax.text(x=0.26, y=-0.13, s='Apr/', transform=ax.transAxes, fontsize=12)
ax.text(x=0.5, y=-0.13, s='Jun/', transform=ax.transAxes, fontsize=12)
ax.text(x=0.76, y=-0.13, s='Oct/', transform=ax.transAxes, fontsize=12)

plt.axvline(x=30, color='k', linestyle='--')
plt.axvline(x=59, color='k', linestyle='--')
plt.axvline(x=89, color='k', linestyle='--')

ax.legend(frameon=False, fontsize=12)

步骤四:保存图像

python 复制代码
###############################################################################
# 存图
plt.savefig(figpath+'214 断裂时间序列', dpi=600, bbox_inches = 'tight')
plt.show()

完整代码在这里:

python 复制代码
###############################################################################
# 导入库包并设置字体
import numpy as np
import matplotlib.pyplot as plt

# 设置西文字体为新罗马字体,中文为宋体,字号为12
from matplotlib import rcParams
config = {
            "font.family": 'serif',
            "font.size": 12,
            "mathtext.fontset": 'stix',
            "font.serif": ['SimSun'],
          }
rcParams.update(config)
rcParams['axes.unicode_minus']=False
datapath = r'H:/00.csdn/01data/'
figpath = r'H:/00.csdn/02fig/'
shppath = r'H:/00.csdn/04shp/cn_shp/Province_9/Province_9.shp'
###############################################################################
nday1 = 31
nday2 = 30
nday3 = 31
nday4 = 31
# 读入自己的数据
x = range(0, nday1 + nday2 + nday3 + nday4 - 3, 1)
y11 = np.random.randint(-10, 5, (nday1))
y12 = y11 - 0.5
y21 = np.random.randint(10, 15, (nday2))
y22 = y21 + 0.5
y31 = np.random.randint(20, 30, (nday3))
y32 = y31 + 0.5
y41 = np.random.randint(15, 25, (nday4))
y42 = y41 - 0.5
###############################################################################
# 画图
fig = plt.figure(figsize=(15, 8))
ax = fig.add_axes([0.1, 0.6, 0.6, 0.4])

ax.plot(x[0:nday1], y11, 'k-', label='OBS')
ax.plot(x[0:nday1], y12, 'k--', label='WRF')
ax.plot(x[nday1-1:nday1+nday2-1], y21, 'k-',)
ax.plot(x[nday1-1:nday1+nday2-1], y22, 'k--',)
ax.plot(x[nday1+nday2-2:nday1+nday2+nday3-2], y31, 'k-',)
ax.plot(x[nday1+nday2-2:nday1+nday2+nday3-2], y32, 'k--',)
ax.plot(x[nday1+nday2+nday3-3:], y41, 'k-',)
ax.plot(x[nday1+nday2+nday3-3:], y42, 'k--',)

ax.set(xlim=(0, 118), 
        xticks=[0, 4, 9, 14, 19, 24, 30, 34, 39, 44, 49, 54, 
                59, 64, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 118], 
        xticklabels=[1, 5, 10, 15, 20, 25, 1, 5, 10, 15, 20, 25, 
                    1, 5, 10, 15, 20, 25, 1, 5, 10, 15, 20, 25, 30],
       
        ylim=(-11, 31), 
        yticks=range(-10, 31, 5),
        yticklabels=range(-10, 31, 5),
        ylabel='Temperature(℃)',)
ax.text(x=0.01, y=1.03, s='T2m_2016_weining(OBS/CTL)', transform=ax.transAxes, fontsize=12)
ax.text(x=0.45, y=-0.21, s='Time(mm/dd)', transform=ax.transAxes, fontsize=12)
ax.text(x=0.00, y=-0.13, s='Jan/', transform=ax.transAxes, fontsize=12)
ax.text(x=0.26, y=-0.13, s='Apr/', transform=ax.transAxes, fontsize=12)
ax.text(x=0.5, y=-0.13, s='Jun/', transform=ax.transAxes, fontsize=12)
ax.text(x=0.76, y=-0.13, s='Oct/', transform=ax.transAxes, fontsize=12)

plt.axvline(x=30, color='k', linestyle='--')
plt.axvline(x=59, color='k', linestyle='--')
plt.axvline(x=89, color='k', linestyle='--')

ax.legend(frameon=False, fontsize=12)
###############################################################################
# 存图
plt.savefig(figpath+'214 断裂时间序列', dpi=600, bbox_inches = 'tight')
plt.show()
相关推荐
上去我就QWER25 分钟前
Python下常用开源库
python·1024程序员节
程序员杰哥2 小时前
Pytest之收集用例规则与运行指定用例
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·pytest
Jyywww1212 小时前
Python基于实战练习的知识点回顾
开发语言·python
朝朝辞暮i3 小时前
从0开始学python(day2)
python
程序员黄同学3 小时前
Python中的列表推导式、字典推导式和集合推导式的性能和应用场景?
开发语言·python
AI小云3 小时前
【Python高级编程】类和实例化
开发语言·人工智能·python
道之极万物灭3 小时前
Python uv虚拟环境管理工具详解
开发语言·python·uv
高洁013 小时前
【无标题】大模型-模型压缩:量化、剪枝、蒸馏、二值化 (2
人工智能·python·深度学习·神经网络·知识图谱
一晌小贪欢3 小时前
Python爬虫第10课:分布式爬虫架构与Scrapy-Redis
分布式·爬虫·python·网络爬虫·python爬虫·python3
代码AI弗森4 小时前
Python × NumPy」 vs 「JavaScript × TensorFlow.js」生态全景图
javascript·python·numpy