YoloV8改进策略:Neck层改进、注意力改进|HCANet全局与局部的注意力模块CAFM|二次创新|即插即用

python 复制代码
yolov9-c summary: 620 layers, 52330674 parameters, 0 gradients, 245.5 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 15/15 00:06
                   all        230       1412      0.917      0.985       0.99      0.735
                   c17        230        131      0.981      0.992      0.995      0.829
                    c5        230         68      0.898          1      0.994      0.841
            helicopter        230         43      0.964          1      0.975      0.648
                  c130        230         85      0.969          1      0.995        0.7
                   f16        230         57      0.887      0.965      0.982      0.689
                    b2        230          2      0.757          1      0.995      0.649
                 other        230         86      0.953       0.94      0.963      0.557
                   b52        230         70       0.97      0.971      0.983      0.826
                  kc10        230         62      0.969      0.984      0.988      0.832
               command        230         40       0.96          1      0.995      0.815
                   f15        230        123      0.978          1      0.995      0.672
                 kc135        230         91      0.979      0.989      0.983       0.72
                   a10        230         27      0.966      0.963      0.974       0.48
                    b1        230         20      0.967          1      0.995      0.677
                   aew        230         25      0.916          1       0.98      0.792
                   f22        230         17      0.895          1      0.995      0.738
                    p3        230        105      0.985          1      0.995      0.794
                    p8        230          1      0.585          1      0.995      0.597
                   f35        230         32      0.969      0.987      0.993      0.574
                   f18        230        125      0.972      0.992      0.987      0.815
                   v22        230         41      0.966          1      0.995      0.711
                 su-27        230         31      0.979          1      0.995      0.849
                 il-38        230         27      0.962          1      0.995      0.804
                tu-134        230          1      0.583          1      0.995      0.895
                 su-33        230          2          1      0.821      0.995      0.697
                 an-70        230          2      0.757          1      0.995      0.823
                 tu-22        230         98      0.984          1      0.995      0.809
Results saved to runs\train\exp7
相关推荐
逻辑流浪者2 小时前
推荐一个意外好用的图像标注平台(YOLOv8 项目实测)
yolo·目标检测·计算机视觉·图像标注
razelan5 小时前
yolo 入门 2 - traeCN 帮助你进行模型训练
yolo·traecn
前网易架构师-高司机7 小时前
汽车充电插口识别数据集,可识别快充,慢充插口,支持yolo,coco json,pascal voc xml格式的标注数据集
xml·yolo·汽车·快充·充电·m慢充·插口
Katecat996639 小时前
【工业视觉检测】基于YOLOv8的皮带输送机关键部件检测与识别系统完整实现
人工智能·yolo·视觉检测
尘桥湖18 小时前
ubuntu20.04训练YOLOv11-seg模型CPU版
yolo
Coding茶水间20 小时前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
liwulin05061 天前
【PYTHON-YOLOV8N】关于YOLO的推理训练图片的尺寸
开发语言·python·yolo
another heaven1 天前
【深度学习 YOLO官方模型全解析】
人工智能·深度学习·yolo
liwulin05061 天前
【PYTHON-YOLOV8N】yoloface+pytorch+cnn进行面部表情识别
python·yolo·cnn
迪菲赫尔曼1 天前
YAML2ModelGraph【v1.0】:一键生成 Ultralytics 模型结构图
人工智能·yolo·目标检测·yolov5·yolov8·yolo11·结构图