YoloV8改进策略:Neck层改进、注意力改进|HCANet全局与局部的注意力模块CAFM|二次创新|即插即用

python 复制代码
yolov9-c summary: 620 layers, 52330674 parameters, 0 gradients, 245.5 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 15/15 00:06
                   all        230       1412      0.917      0.985       0.99      0.735
                   c17        230        131      0.981      0.992      0.995      0.829
                    c5        230         68      0.898          1      0.994      0.841
            helicopter        230         43      0.964          1      0.975      0.648
                  c130        230         85      0.969          1      0.995        0.7
                   f16        230         57      0.887      0.965      0.982      0.689
                    b2        230          2      0.757          1      0.995      0.649
                 other        230         86      0.953       0.94      0.963      0.557
                   b52        230         70       0.97      0.971      0.983      0.826
                  kc10        230         62      0.969      0.984      0.988      0.832
               command        230         40       0.96          1      0.995      0.815
                   f15        230        123      0.978          1      0.995      0.672
                 kc135        230         91      0.979      0.989      0.983       0.72
                   a10        230         27      0.966      0.963      0.974       0.48
                    b1        230         20      0.967          1      0.995      0.677
                   aew        230         25      0.916          1       0.98      0.792
                   f22        230         17      0.895          1      0.995      0.738
                    p3        230        105      0.985          1      0.995      0.794
                    p8        230          1      0.585          1      0.995      0.597
                   f35        230         32      0.969      0.987      0.993      0.574
                   f18        230        125      0.972      0.992      0.987      0.815
                   v22        230         41      0.966          1      0.995      0.711
                 su-27        230         31      0.979          1      0.995      0.849
                 il-38        230         27      0.962          1      0.995      0.804
                tu-134        230          1      0.583          1      0.995      0.895
                 su-33        230          2          1      0.821      0.995      0.697
                 an-70        230          2      0.757          1      0.995      0.823
                 tu-22        230         98      0.984          1      0.995      0.809
Results saved to runs\train\exp7
相关推荐
要努力啊啊啊5 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
加油吧zkf11 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
要努力啊啊啊2 天前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
Ailerx2 天前
YOLOv13震撼发布:超图增强引领目标检测新纪元
人工智能·yolo·目标检测
学技术的大胜嗷3 天前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
一花·一叶4 天前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币4 天前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
OICQQ676580084 天前
创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
yolo·pyqt·疲劳驾驶·检测识别·驾驶员检测·打哈欠检测·眼睛疲劳
king of code porter13 天前
目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析
人工智能·yolo·目标检测
model200514 天前
yolov11转ncnn
yolo·ncnn