YoloV8改进策略:Neck层改进、注意力改进|HCANet全局与局部的注意力模块CAFM|二次创新|即插即用

python 复制代码
yolov9-c summary: 620 layers, 52330674 parameters, 0 gradients, 245.5 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 15/15 00:06
                   all        230       1412      0.917      0.985       0.99      0.735
                   c17        230        131      0.981      0.992      0.995      0.829
                    c5        230         68      0.898          1      0.994      0.841
            helicopter        230         43      0.964          1      0.975      0.648
                  c130        230         85      0.969          1      0.995        0.7
                   f16        230         57      0.887      0.965      0.982      0.689
                    b2        230          2      0.757          1      0.995      0.649
                 other        230         86      0.953       0.94      0.963      0.557
                   b52        230         70       0.97      0.971      0.983      0.826
                  kc10        230         62      0.969      0.984      0.988      0.832
               command        230         40       0.96          1      0.995      0.815
                   f15        230        123      0.978          1      0.995      0.672
                 kc135        230         91      0.979      0.989      0.983       0.72
                   a10        230         27      0.966      0.963      0.974       0.48
                    b1        230         20      0.967          1      0.995      0.677
                   aew        230         25      0.916          1       0.98      0.792
                   f22        230         17      0.895          1      0.995      0.738
                    p3        230        105      0.985          1      0.995      0.794
                    p8        230          1      0.585          1      0.995      0.597
                   f35        230         32      0.969      0.987      0.993      0.574
                   f18        230        125      0.972      0.992      0.987      0.815
                   v22        230         41      0.966          1      0.995      0.711
                 su-27        230         31      0.979          1      0.995      0.849
                 il-38        230         27      0.962          1      0.995      0.804
                tu-134        230          1      0.583          1      0.995      0.895
                 su-33        230          2          1      0.821      0.995      0.697
                 an-70        230          2      0.757          1      0.995      0.823
                 tu-22        230         98      0.984          1      0.995      0.809
Results saved to runs\train\exp7
相关推荐
大霸王龙14 小时前
基于vLLM与YOLO的智能图像分类系统
yolo·分类·数据挖掘
m_136871 天前
Mac M 系列芯片 YOLOv8 部署教程(CPU/Metal 后端一键安装)
yolo·macos
格林威1 天前
机器视觉在半导体制造中有哪些检测应用
人工智能·数码相机·yolo·计算机视觉·视觉检测·制造·相机
、、、、南山小雨、、、、2 天前
YOLO在ubuntu22安装
yolo
羊羊小栈2 天前
基于「YOLO目标检测 + 多模态AI分析」的铁路轨道缺陷检测安全系统(vue+flask+数据集+模型训练)
人工智能·yolo·目标检测·语言模型·毕业设计·创业创新·大作业
Python图像识别2 天前
63_基于深度学习的草莓病害检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
范男2 天前
YOLO11目标检测运行推理简约GUI界面
图像处理·人工智能·yolo·计算机视觉·视觉检测
model20053 天前
ubuntu24.04+5070ti训练yolo模型(2)
人工智能·yolo
强盛小灵通专卖员3 天前
RK3576边缘计算设备部署YOLOv11
人工智能·深度学习·yolo·边缘计算·sci·rk3576·小论文
chenzhiyuan20183 天前
YOLO + OpenPLC + ARMxy:工业智能化视觉识别、边缘计算、工业控制的“三位一体”解决方案
人工智能·yolo·边缘计算