YoloV8改进策略:Neck层改进、注意力改进|HCANet全局与局部的注意力模块CAFM|二次创新|即插即用

python 复制代码
yolov9-c summary: 620 layers, 52330674 parameters, 0 gradients, 245.5 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 15/15 00:06
                   all        230       1412      0.917      0.985       0.99      0.735
                   c17        230        131      0.981      0.992      0.995      0.829
                    c5        230         68      0.898          1      0.994      0.841
            helicopter        230         43      0.964          1      0.975      0.648
                  c130        230         85      0.969          1      0.995        0.7
                   f16        230         57      0.887      0.965      0.982      0.689
                    b2        230          2      0.757          1      0.995      0.649
                 other        230         86      0.953       0.94      0.963      0.557
                   b52        230         70       0.97      0.971      0.983      0.826
                  kc10        230         62      0.969      0.984      0.988      0.832
               command        230         40       0.96          1      0.995      0.815
                   f15        230        123      0.978          1      0.995      0.672
                 kc135        230         91      0.979      0.989      0.983       0.72
                   a10        230         27      0.966      0.963      0.974       0.48
                    b1        230         20      0.967          1      0.995      0.677
                   aew        230         25      0.916          1       0.98      0.792
                   f22        230         17      0.895          1      0.995      0.738
                    p3        230        105      0.985          1      0.995      0.794
                    p8        230          1      0.585          1      0.995      0.597
                   f35        230         32      0.969      0.987      0.993      0.574
                   f18        230        125      0.972      0.992      0.987      0.815
                   v22        230         41      0.966          1      0.995      0.711
                 su-27        230         31      0.979          1      0.995      0.849
                 il-38        230         27      0.962          1      0.995      0.804
                tu-134        230          1      0.583          1      0.995      0.895
                 su-33        230          2          1      0.821      0.995      0.697
                 an-70        230          2      0.757          1      0.995      0.823
                 tu-22        230         98      0.984          1      0.995      0.809
Results saved to runs\train\exp7
相关推荐
懷淰メ11 小时前
python3GUI--【AI加持】基于PyQt5+YOLOv8+DeepSeek的智能球体检测系统:(详细介绍)
yolo·目标检测·计算机视觉·pyqt·检测系统·deepseek·球体检测
AI即插即用2 天前
即插即用系列 | CVPR 2025 WPFormer:用于表面缺陷检测的查询式Transformer
人工智能·深度学习·yolo·目标检测·cnn·视觉检测·transformer
AI即插即用2 天前
即插即用系列 | 2025 MambaNeXt-YOLO 炸裂登场!YOLO 激吻 Mamba,打造实时检测新霸主
人工智能·pytorch·深度学习·yolo·目标检测·计算机视觉·视觉检测
shayudiandian2 天前
YOLOv8目标检测项目实战(从训练到部署)
人工智能·yolo·目标检测
Hcoco_me3 天前
YOLO目标检测学习路线图
学习·yolo·目标检测
dotphoenix3 天前
在wsl ubuntu下安装,训练,验证,导出,部署YOLO的完整例子
yolo
paopao_wu4 天前
目标检测YOLO[03]:推理入门
人工智能·yolo·目标检测
深度学习lover5 天前
<项目代码>yolo遥感航拍船舶识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·遥感船舶识别
Coovally AI模型快速验证5 天前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
人工智能·科技·yolo·目标检测·机器学习·计算机视觉
hans汉斯5 天前
基于改进YOLOv11n的无人机红外目标检测算法
大数据·数据库·人工智能·算法·yolo·目标检测·无人机