YOLOv2 正负样本分配机制详解

YOLOv2 正负样本分配机制详解

在目标检测任务中,正负样本的定义 决定了哪些预测框用于训练,以及如何计算损失函数。YOLOv2 在 YOLOv1 的基础上,引入了 Anchor Boxes(锚框) 机制,正负样本的判断方式也发生了重要变化。


✅ 一、YOLOv2 中的 Anchor Box 引入

YOLOv2 将图像划分为 S × S S \times S S×S 网格,每个网格预测 B B B 个 Anchor Box(默认 5 个),每个 Anchor 预测:

  • 位置偏移 ( t x , t y , t w , t h ) (t_x, t_y, t_w, t_h) (tx,ty,tw,th)
  • 置信度(objectness score)
  • 多个类别的概率(softmax 或 sigmoid)

🎯 二、正负样本的定义

1. 正样本(Positive Samples)

满足以下条件的预测框被视为正样本:

  • 某个 Ground Truth Box 被分配给 与其 IOU 最大的 Anchor Box
  • 分配发生在该目标中心点所在的网格 cell 内。
  • 每个 Ground Truth 只分配给 一个 Anchor(最佳匹配)

即:一张图中有多个目标,每个目标仅分配给一个最合适的 Anchor。


2. 负样本(Negative Samples)

  • 没有被任何 GT 分配的 Anchor 预测框。
  • 与所有 Ground Truth 的最大 IOU 低于阈值(通常为 0.5)

这些 Anchor 被作为负样本,仅用于训练置信度(objectness)为 0。


🧮 三、样本分配机制图示

python 复制代码
Grid Cell (7x7)
  └─ 每个 Cell 预测 5 个 Anchor Box
        ├─ 与某个 GT IOU 最大 → 正样本
        ├─ IOU 太低 → 负样本
        └─ 其他 Anchor 忽略

四、与 YOLOv1 的区别

项目 YOLOv1 YOLOv2
Anchor ❌ 无 ✅ 有
每个 GT 分配框数量 多个(B 个) 仅一个(最佳 Anchor)
负样本定义 其余所有预测框 未分配且 IOU < 阈值
正样本位置 GT 中心落入的 Cell 同上

五、📌 总结

YOLOv2 中的正负样本策略,主要围绕 Anchor Box 与 Ground Truth 的匹配关系:

• 正样本:与 GT 匹配 IOU 最大的 Anchor

• 负样本:其余 Anchor 且 IOU 低

• 忽略:其他 IOU 不高不低者(可选处理)

Bounding Box 与 Anchor 的关系详解

在目标检测中,Anchor Box 是模型预设的一组参考框模板 ,而 Bounding Box 是模型预测的最终目标框,两者之间的关系如下:

名称 说明
Anchor Box 预定义的固定尺寸框,用于覆盖不同尺寸、宽高比的目标
Bounding Box 模型输出的框,用于拟合真实物体(Ground Truth Box)的位置

🔁 关系说明

  1. 模型以 Anchor 为起点 ,通过预测 偏移量(offset) 对其进行微调;
  2. 每个 Anchor 会输出一个预测框(Bounding Box);
  3. 训练过程中,选出与 Ground Truth 重合度最高(IoU 最大)的 Anchor,作为正样本;
  4. 最终的 Bounding Box 是:
    B pred = Anchor + 偏移量 B_{\text{pred}} = \text{Anchor} + \text{偏移量} Bpred=Anchor+偏移量

🧠 举例

  • Anchor: [w=100, h=200](模型预定义的框)
  • 偏移预测: [dx, dy, dw, dh]
  • 最终预测框 (Bounding Box): 根据 anchor + 偏移解码得到

Anchor 是起点,Bounding Box 是终点。

相关推荐
zzywxc78737 分钟前
AI在编程、测试、数据分析等领域的前沿应用(技术报告)
人工智能·深度学习·机器学习·数据挖掘·数据分析·自动化·ai编程
铭keny1 小时前
YOLOv8 基于RTSP流目标检测
人工智能·yolo·目标检测
墨尘游子1 小时前
11-大语言模型—Transformer 盖楼,BERT 装修,RoBERTa 直接 “拎包入住”|预训练白话指南
人工智能·语言模型·自然语言处理
金井PRATHAMA1 小时前
主要分布于内侧内嗅皮层的层Ⅲ的网格-速度联合细胞(Grid × Speed Conjunctive Cells)对NLP中的深层语义分析的积极影响和启示
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·知识图谱
天道哥哥2 小时前
InsightFace(RetinaFace + ArcFace)人脸识别项目(预训练模型,鲁棒性很好)
人工智能·目标检测
幻风_huanfeng2 小时前
学习人工智能所需知识体系及路径详解
人工智能·学习
云道轩2 小时前
使用Docker在Rocky Linux 9.5上在线部署LangFlow
linux·人工智能·docker·容器·langflow
POLOAPI3 小时前
从模型到生产:AI 大模型落地工程与效率优化实践
人工智能·gpt·gemini
谷歌上搜百度3 小时前
LLM并非“万能钥匙”——深度解析大语言模型的本质与边界
人工智能·llm
Wendy14413 小时前
【图像掩膜】——图像预处理(OpenCV)
人工智能·opencv·计算机视觉