深度学习Day-18:ResNet50V2算法实战与解析

🍨 本文为:[🔗365天深度学习训练营] 中的学习记录博客

🍖 原作者:[K同学啊 | 接辅导、项目定制]

要求:

  1. 根据本文Tensorflow代码,编写对应的Pytorch代码
  2. 了解ResNetV2与ResNetV的区别

一、 基础配置

  • 语言环境:Python3.8
  • 编译器选择:Pycharm
  • 深度学习环境:
    • torch==1.12.1+cu113
    • torchvision==0.13.1+cu113

二、 前期准备

1.设置GPU

python 复制代码
import torch
import torch.nn as nn
from torchvision import transforms, datasets
import pathlib, warnings

warnings.filterwarnings("ignore")  # 忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2. 导入数据

本项目所采用的数据集未收录于公开数据中,故需要自己在文件目录中导入相应数据集合,并设置对应文件目录,以供后续学习过程中使用。

运行下述代码:

python 复制代码
data_dir = './data/bird_photos/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
print(classeNames)

得到如下输出:

python 复制代码
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']

接下来,我们通过transforms.Compose对整个数据集进行预处理:

python 复制代码
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),      # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),              # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(               # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])      # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),      # 将输入图片resize成统一尺寸
    transforms.ToTensor(),              # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(               # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])      # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("./data/bird_photos/", transform=train_transforms)
print(total_data.class_to_idx)

得到如下输出:

python 复制代码
{'Bananaquit': 0, 'Black Skimmer': 1, 'Black Throated Bushtiti': 2, 'Cockatoo': 3}

3. 划分数据集

此处数据集需要做按比例划分的操作:

python 复制代码
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

接下来,根据划分得到的训练集和验证集对数据集进行包装:

python 复制代码
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=0)

并通过:

python 复制代码
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出测试数据集的数据分布情况:

python 复制代码
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

4.搭建模型

1.模型搭建

python 复制代码
class Block2(nn.Module):
    def __init__(self, in_channel, filters, kernel_size=3, stride=1, conv_shortcut=False):
        super(Block2, self).__init__()
        self.preact = nn.Sequential(
            nn.BatchNorm2d(in_channel),
            nn.ReLU(True)
        )

        self.shortcut = conv_shortcut
        if self.shortcut:
            self.short = nn.Conv2d(in_channel, 4 * filters, 1, stride=stride, padding=0, bias=False)
        elif stride > 1:
            self.short = nn.MaxPool2d(kernel_size=1, stride=stride, padding=0)
        else:
            self.short = nn.Identity()

        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, filters, 1, stride=1, bias=False),
            nn.BatchNorm2d(filters),
            nn.ReLU(True)
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(filters, filters, kernel_size, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(filters),
            nn.ReLU(True)
        )
        self.conv3 = nn.Conv2d(filters, 4 * filters, 1, stride=1, bias=False)

    def forward(self, x):
        x1 = self.preact(x)
        if self.shortcut:
            x2 = self.short(x1)
        else:
            x2 = self.short(x)
        x1 = self.conv1(x1)
        x1 = self.conv2(x1)
        x1 = self.conv3(x1)
        x = x1 + x2
        return x


class Stack2(nn.Module):
    def __init__(self, in_channel, filters, blocks, stride=2):
        super(Stack2, self).__init__()
        self.conv = nn.Sequential()
        self.conv.add_module(str(0), Block2(in_channel, filters, conv_shortcut=True))
        for i in range(1, blocks - 1):
            self.conv.add_module(str(i), Block2(4 * filters, filters))
        self.conv.add_module(str(blocks - 1), Block2(4 * filters, filters, stride=stride))

    def forward(self, x):
        x = self.conv(x)
        return x


class ResNet50V2(nn.Module):
    def __init__(self,
                 include_top=True,  # 是否包含位于网络顶部的全链接层
                 preact=True,  # 是否使用预激活
                 use_bias=True,  # 是否对卷积层使用偏置
                 input_shape=[224, 224, 3],
                 classes=1000,
                 pooling=None):  # 用于分类图像的可选类数
        super(ResNet50V2, self).__init__()

        self.conv1 = nn.Sequential()
        self.conv1.add_module('conv', nn.Conv2d(3, 64, 7, stride=2, padding=3, bias=use_bias, padding_mode='zeros'))
        if not preact:
            self.conv1.add_module('bn', nn.BatchNorm2d(64))
            self.conv1.add_module('relu', nn.ReLU())
        self.conv1.add_module('max_pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

        self.conv2 = Stack2(64, 64, 3)
        self.conv3 = Stack2(256, 128, 4)
        self.conv4 = Stack2(512, 256, 6)
        self.conv5 = Stack2(1024, 512, 3, stride=1)

        self.post = nn.Sequential()
        if preact:
            self.post.add_module('bn', nn.BatchNorm2d(2048))
            self.post.add_module('relu', nn.ReLU())
        if include_top:
            self.post.add_module('avg_pool', nn.AdaptiveAvgPool2d((1, 1)))
            self.post.add_module('flatten', nn.Flatten())
            self.post.add_module('fc', nn.Linear(2048, classes))
        else:
            if pooling == 'avg':
                self.post.add_module('avg_pool', nn.AdaptiveAvgPool2d((1, 1)))
            elif pooling == 'max':
                self.post.add_module('max_pool', nn.AdaptiveMaxPool2d((1, 1)))

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.post(x)
        return x


model = ResNet50V2().to(device)

2.查看模型信息

python 复制代码
import torchsummary as summary
summary.summary(model, (3, 224, 224))

得到如下输出:

python 复制代码
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,472
         MaxPool2d-2           [-1, 64, 56, 56]               0
       BatchNorm2d-3           [-1, 64, 56, 56]             128
              ReLU-4           [-1, 64, 56, 56]               0
            Conv2d-5          [-1, 256, 56, 56]          16,384
            Conv2d-6           [-1, 64, 56, 56]           4,096
       BatchNorm2d-7           [-1, 64, 56, 56]             128
              ReLU-8           [-1, 64, 56, 56]               0
            Conv2d-9           [-1, 64, 56, 56]          36,864
      BatchNorm2d-10           [-1, 64, 56, 56]             128
             ReLU-11           [-1, 64, 56, 56]               0
           Conv2d-12          [-1, 256, 56, 56]          16,384
           Block2-13          [-1, 256, 56, 56]               0
      BatchNorm2d-14          [-1, 256, 56, 56]             512
             ReLU-15          [-1, 256, 56, 56]               0
         Identity-16          [-1, 256, 56, 56]               0
           Conv2d-17           [-1, 64, 56, 56]          16,384
      BatchNorm2d-18           [-1, 64, 56, 56]             128
             ReLU-19           [-1, 64, 56, 56]               0
           Conv2d-20           [-1, 64, 56, 56]          36,864
      BatchNorm2d-21           [-1, 64, 56, 56]             128
             ReLU-22           [-1, 64, 56, 56]               0
           Conv2d-23          [-1, 256, 56, 56]          16,384
           Block2-24          [-1, 256, 56, 56]               0
      BatchNorm2d-25          [-1, 256, 56, 56]             512
             ReLU-26          [-1, 256, 56, 56]               0
        MaxPool2d-27          [-1, 256, 28, 28]               0
           Conv2d-28           [-1, 64, 56, 56]          16,384
      BatchNorm2d-29           [-1, 64, 56, 56]             128
             ReLU-30           [-1, 64, 56, 56]               0
           Conv2d-31           [-1, 64, 28, 28]          36,864
      BatchNorm2d-32           [-1, 64, 28, 28]             128
             ReLU-33           [-1, 64, 28, 28]               0
           Conv2d-34          [-1, 256, 28, 28]          16,384
           Block2-35          [-1, 256, 28, 28]               0
           Stack2-36          [-1, 256, 28, 28]               0
      BatchNorm2d-37          [-1, 256, 28, 28]             512
             ReLU-38          [-1, 256, 28, 28]               0
           Conv2d-39          [-1, 512, 28, 28]         131,072
           Conv2d-40          [-1, 128, 28, 28]          32,768
      BatchNorm2d-41          [-1, 128, 28, 28]             256
             ReLU-42          [-1, 128, 28, 28]               0
           Conv2d-43          [-1, 128, 28, 28]         147,456
      BatchNorm2d-44          [-1, 128, 28, 28]             256
             ReLU-45          [-1, 128, 28, 28]               0
           Conv2d-46          [-1, 512, 28, 28]          65,536
           Block2-47          [-1, 512, 28, 28]               0
      BatchNorm2d-48          [-1, 512, 28, 28]           1,024
             ReLU-49          [-1, 512, 28, 28]               0
         Identity-50          [-1, 512, 28, 28]               0
           Conv2d-51          [-1, 128, 28, 28]          65,536
      BatchNorm2d-52          [-1, 128, 28, 28]             256
             ReLU-53          [-1, 128, 28, 28]               0
           Conv2d-54          [-1, 128, 28, 28]         147,456
      BatchNorm2d-55          [-1, 128, 28, 28]             256
             ReLU-56          [-1, 128, 28, 28]               0
           Conv2d-57          [-1, 512, 28, 28]          65,536
           Block2-58          [-1, 512, 28, 28]               0
      BatchNorm2d-59          [-1, 512, 28, 28]           1,024
             ReLU-60          [-1, 512, 28, 28]               0
         Identity-61          [-1, 512, 28, 28]               0
           Conv2d-62          [-1, 128, 28, 28]          65,536
      BatchNorm2d-63          [-1, 128, 28, 28]             256
             ReLU-64          [-1, 128, 28, 28]               0
           Conv2d-65          [-1, 128, 28, 28]         147,456
      BatchNorm2d-66          [-1, 128, 28, 28]             256
             ReLU-67          [-1, 128, 28, 28]               0
           Conv2d-68          [-1, 512, 28, 28]          65,536
           Block2-69          [-1, 512, 28, 28]               0
      BatchNorm2d-70          [-1, 512, 28, 28]           1,024
             ReLU-71          [-1, 512, 28, 28]               0
        MaxPool2d-72          [-1, 512, 14, 14]               0
           Conv2d-73          [-1, 128, 28, 28]          65,536
      BatchNorm2d-74          [-1, 128, 28, 28]             256
             ReLU-75          [-1, 128, 28, 28]               0
           Conv2d-76          [-1, 128, 14, 14]         147,456
      BatchNorm2d-77          [-1, 128, 14, 14]             256
             ReLU-78          [-1, 128, 14, 14]               0
           Conv2d-79          [-1, 512, 14, 14]          65,536
           Block2-80          [-1, 512, 14, 14]               0
           Stack2-81          [-1, 512, 14, 14]               0
      BatchNorm2d-82          [-1, 512, 14, 14]           1,024
             ReLU-83          [-1, 512, 14, 14]               0
           Conv2d-84         [-1, 1024, 14, 14]         524,288
           Conv2d-85          [-1, 256, 14, 14]         131,072
      BatchNorm2d-86          [-1, 256, 14, 14]             512
             ReLU-87          [-1, 256, 14, 14]               0
           Conv2d-88          [-1, 256, 14, 14]         589,824
      BatchNorm2d-89          [-1, 256, 14, 14]             512
             ReLU-90          [-1, 256, 14, 14]               0
           Conv2d-91         [-1, 1024, 14, 14]         262,144
           Block2-92         [-1, 1024, 14, 14]               0
      BatchNorm2d-93         [-1, 1024, 14, 14]           2,048
             ReLU-94         [-1, 1024, 14, 14]               0
         Identity-95         [-1, 1024, 14, 14]               0
           Conv2d-96          [-1, 256, 14, 14]         262,144
      BatchNorm2d-97          [-1, 256, 14, 14]             512
             ReLU-98          [-1, 256, 14, 14]               0
           Conv2d-99          [-1, 256, 14, 14]         589,824
     BatchNorm2d-100          [-1, 256, 14, 14]             512
            ReLU-101          [-1, 256, 14, 14]               0
          Conv2d-102         [-1, 1024, 14, 14]         262,144
          Block2-103         [-1, 1024, 14, 14]               0
     BatchNorm2d-104         [-1, 1024, 14, 14]           2,048
            ReLU-105         [-1, 1024, 14, 14]               0
        Identity-106         [-1, 1024, 14, 14]               0
          Conv2d-107          [-1, 256, 14, 14]         262,144
     BatchNorm2d-108          [-1, 256, 14, 14]             512
            ReLU-109          [-1, 256, 14, 14]               0
          Conv2d-110          [-1, 256, 14, 14]         589,824
     BatchNorm2d-111          [-1, 256, 14, 14]             512
            ReLU-112          [-1, 256, 14, 14]               0
          Conv2d-113         [-1, 1024, 14, 14]         262,144
          Block2-114         [-1, 1024, 14, 14]               0
     BatchNorm2d-115         [-1, 1024, 14, 14]           2,048
            ReLU-116         [-1, 1024, 14, 14]               0
        Identity-117         [-1, 1024, 14, 14]               0
          Conv2d-118          [-1, 256, 14, 14]         262,144
     BatchNorm2d-119          [-1, 256, 14, 14]             512
            ReLU-120          [-1, 256, 14, 14]               0
          Conv2d-121          [-1, 256, 14, 14]         589,824
     BatchNorm2d-122          [-1, 256, 14, 14]             512
            ReLU-123          [-1, 256, 14, 14]               0
          Conv2d-124         [-1, 1024, 14, 14]         262,144
          Block2-125         [-1, 1024, 14, 14]               0
     BatchNorm2d-126         [-1, 1024, 14, 14]           2,048
            ReLU-127         [-1, 1024, 14, 14]               0
        Identity-128         [-1, 1024, 14, 14]               0
          Conv2d-129          [-1, 256, 14, 14]         262,144
     BatchNorm2d-130          [-1, 256, 14, 14]             512
            ReLU-131          [-1, 256, 14, 14]               0
          Conv2d-132          [-1, 256, 14, 14]         589,824
     BatchNorm2d-133          [-1, 256, 14, 14]             512
            ReLU-134          [-1, 256, 14, 14]               0
          Conv2d-135         [-1, 1024, 14, 14]         262,144
          Block2-136         [-1, 1024, 14, 14]               0
     BatchNorm2d-137         [-1, 1024, 14, 14]           2,048
            ReLU-138         [-1, 1024, 14, 14]               0
       MaxPool2d-139           [-1, 1024, 7, 7]               0
          Conv2d-140          [-1, 256, 14, 14]         262,144
     BatchNorm2d-141          [-1, 256, 14, 14]             512
            ReLU-142          [-1, 256, 14, 14]               0
          Conv2d-143            [-1, 256, 7, 7]         589,824
     BatchNorm2d-144            [-1, 256, 7, 7]             512
            ReLU-145            [-1, 256, 7, 7]               0
          Conv2d-146           [-1, 1024, 7, 7]         262,144
          Block2-147           [-1, 1024, 7, 7]               0
          Stack2-148           [-1, 1024, 7, 7]               0
     BatchNorm2d-149           [-1, 1024, 7, 7]           2,048
            ReLU-150           [-1, 1024, 7, 7]               0
          Conv2d-151           [-1, 2048, 7, 7]       2,097,152
          Conv2d-152            [-1, 512, 7, 7]         524,288
     BatchNorm2d-153            [-1, 512, 7, 7]           1,024
            ReLU-154            [-1, 512, 7, 7]               0
          Conv2d-155            [-1, 512, 7, 7]       2,359,296
     BatchNorm2d-156            [-1, 512, 7, 7]           1,024
            ReLU-157            [-1, 512, 7, 7]               0
          Conv2d-158           [-1, 2048, 7, 7]       1,048,576
          Block2-159           [-1, 2048, 7, 7]               0
     BatchNorm2d-160           [-1, 2048, 7, 7]           4,096
            ReLU-161           [-1, 2048, 7, 7]               0
        Identity-162           [-1, 2048, 7, 7]               0
          Conv2d-163            [-1, 512, 7, 7]       1,048,576
     BatchNorm2d-164            [-1, 512, 7, 7]           1,024
            ReLU-165            [-1, 512, 7, 7]               0
          Conv2d-166            [-1, 512, 7, 7]       2,359,296
     BatchNorm2d-167            [-1, 512, 7, 7]           1,024
            ReLU-168            [-1, 512, 7, 7]               0
          Conv2d-169           [-1, 2048, 7, 7]       1,048,576
          Block2-170           [-1, 2048, 7, 7]               0
     BatchNorm2d-171           [-1, 2048, 7, 7]           4,096
            ReLU-172           [-1, 2048, 7, 7]               0
        Identity-173           [-1, 2048, 7, 7]               0
          Conv2d-174            [-1, 512, 7, 7]       1,048,576
     BatchNorm2d-175            [-1, 512, 7, 7]           1,024
            ReLU-176            [-1, 512, 7, 7]               0
          Conv2d-177            [-1, 512, 7, 7]       2,359,296
     BatchNorm2d-178            [-1, 512, 7, 7]           1,024
            ReLU-179            [-1, 512, 7, 7]               0
          Conv2d-180           [-1, 2048, 7, 7]       1,048,576
          Block2-181           [-1, 2048, 7, 7]               0
          Stack2-182           [-1, 2048, 7, 7]               0
     BatchNorm2d-183           [-1, 2048, 7, 7]           4,096
            ReLU-184           [-1, 2048, 7, 7]               0
AdaptiveAvgPool2d-185           [-1, 2048, 1, 1]               0
         Flatten-186                 [-1, 2048]               0
          Linear-187                 [-1, 1000]       2,049,000
================================================================
Total params: 25,549,416
Trainable params: 25,549,416
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 241.69
Params size (MB): 97.46
Estimated Total Size (MB): 339.73
----------------------------------------------------------------

三、 训练模型

1. 编写训练函数

python 复制代码
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0    # 初始化训练损失和正确率

    for X, y in dataloader:         # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)             # 网络输出
        loss = loss_fn(pred, y)     # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()       # grad属性归零
        loss.backward()             # 反向传播
        optimizer.step()            # 每一步自动更新

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

python 复制代码
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)   # 批次数目
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

3.正式训练

python 复制代码
import copy

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数

epochs = 10

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(optimizer, epoch, learn_rate)

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))

# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

得到如下输出:

python 复制代码
Epoch: 1, Train_acc:38.3%, Train_loss:5.263, Test_acc:31.9%, Test_loss:5.151, Lr:1.00E-04
Epoch: 2, Train_acc:71.9%, Train_loss:1.759, Test_acc:31.0%, Test_loss:3.492, Lr:1.00E-04
Epoch: 3, Train_acc:82.7%, Train_loss:0.822, Test_acc:85.8%, Test_loss:0.620, Lr:1.00E-04
Epoch: 4, Train_acc:89.2%, Train_loss:0.478, Test_acc:83.2%, Test_loss:0.762, Lr:1.00E-04
Epoch: 5, Train_acc:89.2%, Train_loss:0.444, Test_acc:86.7%, Test_loss:0.629, Lr:1.00E-04
Epoch: 6, Train_acc:91.2%, Train_loss:0.359, Test_acc:73.5%, Test_loss:0.802, Lr:1.00E-04
Epoch: 7, Train_acc:95.1%, Train_loss:0.173, Test_acc:79.6%, Test_loss:0.689, Lr:1.00E-04
Epoch: 8, Train_acc:96.5%, Train_loss:0.141, Test_acc:80.5%, Test_loss:0.704, Lr:1.00E-04
Epoch: 9, Train_acc:98.5%, Train_loss:0.089, Test_acc:78.8%, Test_loss:0.879, Lr:1.00E-04
Epoch:10, Train_acc:95.8%, Train_loss:0.196, Test_acc:81.4%, Test_loss:0.718, Lr:1.00E-04
Done
预测结果是:Bananaquit
0.8672566371681416 0.5955437496304512
0.8672566371681416

Process finished with exit code 0

四、 结果可视化

1. Loss&Accuracy

python 复制代码
import matplotlib.pyplot as plt
# 隐藏警告
import warnings

warnings.filterwarnings("ignore")  # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

得到的可视化结果:

2. 指定图片进行预测

首先,先定义出一个用于预测的函数:

python 复制代码
from PIL import Image

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)

    img = test_img.to(device).unsqueeze(0)

    model.eval()
    output = model(img)

    _, pred = torch.max(output, 1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

接着调用函数对指定图片进行预测:

python 复制代码
predict_one_image(image_path='./data/bird_photos/Bananaquit/007.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

得到如下结果:

python 复制代码
预测结果是:Bananaquit

3.模型评估

将模型调至评估模式:

python 复制代码
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
print(epoch_test_acc, epoch_test_loss)

得到如下输出:

python 复制代码
0.8672566371681416 0.5955437496304512

观察得到和前文中一致。

五、个人理解

除完成Tensorflow与pytorch之间的代码转换,还需了解ResNetV2及ResNetV之间的关系及区别:

首先,对比两个残差结构:

可以看出(a)结构先卷积后进行 BN 和激活函数计算,最后执行 addition 后再进行ReLU 计算; (b)结构先进行 BN 和激活函数计算后卷积,把 addition 后的 ReLU 计算放到了残差结构内部。

ResNetV2的最终确定经过了两轮尝试:

5.1关于残差结构的尝试

作者用不同 shortcut 结构的 ResNet-110 在 CIFAR-10 数据集上做测试,发现最原始的(a)original 结构是最好的,也就是 identity mapping 恒等映射是最好的

5.2关于激活的尝试

经实验发现,最好的结果是(e)full pre-activation,其次到(a)original。

相关推荐
矢量赛奇5 分钟前
比ChatGPT更酷的AI工具
人工智能·ai·ai写作·视频
KuaFuAI14 分钟前
微软推出的AI无代码编程微应用平台GitHub Spark和国产AI原生无代码工具CodeFlying比到底咋样?
人工智能·github·aigc·ai编程·codeflying·github spark·自然语言开发软件
Make_magic23 分钟前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
shelly聊AI27 分钟前
语音识别原理:AI 是如何听懂人类声音的
人工智能·语音识别
源于花海30 分钟前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
雷龙发展:Leah31 分钟前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
4v1d35 分钟前
边缘计算的学习
人工智能·学习·边缘计算
风之馨技术录38 分钟前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频
sniper_fandc1 小时前
深度学习基础—Seq2Seq模型
人工智能·深度学习
goomind1 小时前
深度学习模型评价指标介绍
人工智能·python·深度学习·计算机视觉