【深度学习】ONNX介绍

ONNX(Open Neural Network Exchange)

ONNX 是一种用于表示深度学习模型的开放格式,使得不同深度学习框架(如 PyTorch、TensorFlow、Caffe2 等)之间的模型能够相互交换。

需安装:

bash 复制代码
pip install --upgrade onnx onnxscript onnxruntime

Pytorch张量

可使用torch.rand()方法创建0~1均匀分布的随机数,使用torch.randn()方法创建标准正态分布随机数,使用torch.zeros()和torch.ones()方法创建全0和全1的张量。

在构造张量时使用dtype明确其类型。

PyTorch针对torch.float32和torch.int64类型有专门这样的简写形式是因为,这两种类型特别重要,模型的输入类型一般都是torch.float32,而模型分类问题的标签类型一般为torch.int64。

torch.onnx.export 是 PyTorch 自带的把模型转换成 ONNX 格式的函数。前三个参数分别是要转换的模型模型的任意一组输入导出的 ONNX 文件的文件名

简单示例

python 复制代码
import torch  
import torchvision.models as models  
  
# 加载一个预训练的 PyTorch 模型  
model = models.resnet18(pretrained=True)  
model.eval()  
  
# 创建一个虚拟输入张量(这里使用随机数据)  
dummy_input = torch.randn(1, 3, 224, 224)  # 假设输入是一张 224x224 的 RGB 图像  
  
# 导出模型为 ONNX 格式  
torch.onnx.export(model, dummy_input, "resnet18.onnx", verbose=True, input_names=["input_0"], output_names=["output_0"])

注意点:

  • 确保你的 PyTorch 模型在导出之前已经处于评估模式(model.eval()

  • 示例输入(dummy input)应该与你的模型训练时使用的输入具有相同的形状和数据类型。

  • 在将输入数据传递给 ONNX Runtime 之前,请确保它们已经转换为 NumPy 数组,并且位于 CPU 上

相关推荐
编程小白_正在努力中28 分钟前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海43 分钟前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
音视频牛哥43 分钟前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
该用户已不存在1 小时前
在 Gemini CLI 中使用 Gemini 3 Pro 实操指南
人工智能·ai编程·gemini
东皇太星1 小时前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
aircrushin2 小时前
TRAE SOLO 中国版,正式发布!AI 编程的 "Solo" 时代来了?
前端·人工智能
Java中文社群2 小时前
保姆级教程:3分钟带你轻松搭建N8N自动化平台!(内附视频)
人工智能·工作流引擎
是Yu欸2 小时前
DevUI MateChat 技术演进:UI 与逻辑解耦的声明式 AI 交互架构
前端·人工智能·ui·ai·前端框架·devui·metachat
我不是QI2 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
H***99762 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习