【深度学习】ONNX介绍

ONNX(Open Neural Network Exchange)

ONNX 是一种用于表示深度学习模型的开放格式,使得不同深度学习框架(如 PyTorch、TensorFlow、Caffe2 等)之间的模型能够相互交换。

需安装:

bash 复制代码
pip install --upgrade onnx onnxscript onnxruntime

Pytorch张量

可使用torch.rand()方法创建0~1均匀分布的随机数,使用torch.randn()方法创建标准正态分布随机数,使用torch.zeros()和torch.ones()方法创建全0和全1的张量。

在构造张量时使用dtype明确其类型。

PyTorch针对torch.float32和torch.int64类型有专门这样的简写形式是因为,这两种类型特别重要,模型的输入类型一般都是torch.float32,而模型分类问题的标签类型一般为torch.int64。

torch.onnx.export 是 PyTorch 自带的把模型转换成 ONNX 格式的函数。前三个参数分别是要转换的模型模型的任意一组输入导出的 ONNX 文件的文件名

简单示例

python 复制代码
import torch  
import torchvision.models as models  
  
# 加载一个预训练的 PyTorch 模型  
model = models.resnet18(pretrained=True)  
model.eval()  
  
# 创建一个虚拟输入张量(这里使用随机数据)  
dummy_input = torch.randn(1, 3, 224, 224)  # 假设输入是一张 224x224 的 RGB 图像  
  
# 导出模型为 ONNX 格式  
torch.onnx.export(model, dummy_input, "resnet18.onnx", verbose=True, input_names=["input_0"], output_names=["output_0"])

注意点:

  • 确保你的 PyTorch 模型在导出之前已经处于评估模式(model.eval()

  • 示例输入(dummy input)应该与你的模型训练时使用的输入具有相同的形状和数据类型。

  • 在将输入数据传递给 ONNX Runtime 之前,请确保它们已经转换为 NumPy 数组,并且位于 CPU 上

相关推荐
shayudiandian23 分钟前
深度学习中的激活函数全解析:该选哪一个?
人工智能·深度学习
视界先声1 小时前
如何选择合适的养老服务机器人
人工智能·物联网·机器人
RPA机器人就选八爪鱼1 小时前
RPA财务机器人:重塑财务效率,数字化转型的核心利器
大数据·数据库·人工智能·机器人·rpa
腾讯WeTest1 小时前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
凯子坚持 c2 小时前
openGauss向量数据库技术演进与AI应用生态全景
数据库·人工智能
嵌入式-老费2 小时前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习
温柔哥`2 小时前
HiProbe-VAD:通过在免微调多模态大语言模型中探测隐状态实现视频异常检测
人工智能·语言模型·音视频
强化学习与机器人控制仿真3 小时前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
机器之心3 小时前
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
人工智能·openai
Elastic 中国社区官方博客3 小时前
Elasticsearch:如何创建知识库并使用 AI Assistant 来配置 slack 连接器
大数据·人工智能·elasticsearch·搜索引擎·全文检索·信息与通信