【深度学习】ONNX介绍

ONNX(Open Neural Network Exchange)

ONNX 是一种用于表示深度学习模型的开放格式,使得不同深度学习框架(如 PyTorch、TensorFlow、Caffe2 等)之间的模型能够相互交换。

需安装:

bash 复制代码
pip install --upgrade onnx onnxscript onnxruntime

Pytorch张量

可使用torch.rand()方法创建0~1均匀分布的随机数,使用torch.randn()方法创建标准正态分布随机数,使用torch.zeros()和torch.ones()方法创建全0和全1的张量。

在构造张量时使用dtype明确其类型。

PyTorch针对torch.float32和torch.int64类型有专门这样的简写形式是因为,这两种类型特别重要,模型的输入类型一般都是torch.float32,而模型分类问题的标签类型一般为torch.int64。

torch.onnx.export 是 PyTorch 自带的把模型转换成 ONNX 格式的函数。前三个参数分别是要转换的模型模型的任意一组输入导出的 ONNX 文件的文件名

简单示例

python 复制代码
import torch  
import torchvision.models as models  
  
# 加载一个预训练的 PyTorch 模型  
model = models.resnet18(pretrained=True)  
model.eval()  
  
# 创建一个虚拟输入张量(这里使用随机数据)  
dummy_input = torch.randn(1, 3, 224, 224)  # 假设输入是一张 224x224 的 RGB 图像  
  
# 导出模型为 ONNX 格式  
torch.onnx.export(model, dummy_input, "resnet18.onnx", verbose=True, input_names=["input_0"], output_names=["output_0"])

注意点:

  • 确保你的 PyTorch 模型在导出之前已经处于评估模式(model.eval()

  • 示例输入(dummy input)应该与你的模型训练时使用的输入具有相同的形状和数据类型。

  • 在将输入数据传递给 ONNX Runtime 之前,请确保它们已经转换为 NumPy 数组,并且位于 CPU 上

相关推荐
@心都22 分钟前
机器学习数学基础:44.多元线性回归
人工智能·机器学习·线性回归
说私域22 分钟前
基于开源AI大模型的精准零售模式创新——融合AI智能名片与S2B2C商城小程序源码的“人工智能 + 线下零售”路径探索
人工智能·搜索引擎·小程序·开源·零售
熊文豪25 分钟前
Windows本地部署OpenManus并接入Mistral模型的实践记录
人工智能·llm·mistral·manus·openmanus·openmanus开源替代方案·本地llm部署实践
IT猿手27 分钟前
2025最新群智能优化算法:海市蜃楼搜索优化(Mirage Search Optimization, MSO)算法求解23个经典函数测试集,MATLAB
开发语言·人工智能·算法·机器学习·matlab·机器人
IT猿手2 小时前
2025最新群智能优化算法:山羊优化算法(Goat Optimization Algorithm, GOA)求解23个经典函数测试集,MATLAB
人工智能·python·算法·数学建模·matlab·智能优化算法
Jet45053 小时前
玩转ChatGPT:GPT 深入研究功能
人工智能·gpt·chatgpt·deep research·深入研究
毕加锁3 小时前
chatgpt完成python提取PDF简历指定内容的案例
人工智能·chatgpt
Wis4e5 小时前
基于PyTorch的深度学习3——基于autograd的反向传播
人工智能·pytorch·深度学习
西猫雷婶6 小时前
神经网络|(十四)|霍普菲尔德神经网络-Hebbian训练
人工智能·深度学习·神经网络
梦丶晓羽7 小时前
自然语言处理:文本分类
人工智能·python·自然语言处理·文本分类·朴素贝叶斯·逻辑斯谛回归