机器学习排序方法

一、单文档方法(Pointwise)

处理对象是单一文档,将文档转换为特征向量后,将排序问题转化为机器学习中常规的分类或回归问题。CTR方法是单文档方法的典型应用,相对比较成熟,广泛应用于广告、搜索、推荐中。y=f(x),其中y属于[0,1],y的值越大表示用户点击率越高。

样本之间互不影响

二、文档对方法(Pairwise)

相比于单文档方法,文档对方法将重点转向文档顺序关系,是目前相对比较流行的方法。其输入是文档对,输出是局部的优先顺序,主要是将排序问题转化为二分类问题。对于同一query的相关文档集中,任何两个不同标记的文档都可以组成一个训练实例(di,dj),如果di>dj,则赋值为1,视为正例;反之赋值为-1(或者0),视为负例,这样就得到二分类模型所需的训练样本。预测时可以得到所有文档的偏序关系,从而实现排序。

文档之间先后循序相互影响。

三、文档列表方法(Listwise)

把每个查询对应的所有搜索结果列表作为一个训练样例。根据训练样例训练得到的最优评分函数F,评分函数F对每个文档打分,然后根据得分由高到低排序,得到最终的排序结果。

相关推荐
华玥作者3 小时前
[特殊字符] VitePress 对接 Algolia AI 问答(DocSearch + AI Search)完整实战(下)
前端·人工智能·ai
AAD555888993 小时前
YOLO11-EfficientRepBiPAN载重汽车轮胎热成像检测与分类_3
人工智能·分类·数据挖掘
王建文go3 小时前
RAG(宠物健康AI)
人工智能·宠物·rag
ALINX技术博客3 小时前
【202601芯动态】全球 FPGA 异构热潮,ALINX 高性能异构新品预告
人工智能·fpga开发·gpu算力·fpga
易营宝3 小时前
多语言网站建设避坑指南:既要“数据同步”,又能“按市场个性化”,别踩这 5 个坑
大数据·人工智能
春日见3 小时前
vscode代码无法跳转
大数据·人工智能·深度学习·elasticsearch·搜索引擎
Drgfd4 小时前
真智能 vs 伪智能:天选 WE H7 Lite 用 AI 人脸识别 + 呼吸灯带,重新定义智能化充电桩
人工智能·智能充电桩·家用充电桩·充电桩推荐
萤丰信息4 小时前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
盖雅工场4 小时前
排班+成本双管控,餐饮零售精细化运营破局
人工智能·零售餐饮·ai智能排班
神策数据5 小时前
打造 AI Growth Team: 以 Data + AI 重塑品牌零售增长范式
人工智能·零售