机器学习笔记——K近邻算法、手写数字识别

KNN算法

"物以类聚,人以群分"相似的数据往往拥有相同的类别

其大概原理就是一个样本归到哪一类,当前样本需要归到频次最高的哪个类去

也就是说有一个待分类的样本,然后跟他周围的k个样本来看,k中哪一个类最多,待分类的样本就是哪一个。

那就以手写数字识别为例吧

c 复制代码
import matplotlib.pyplot as plt
import numpy as np
import os
#%%
# 读入mnist数据集
m_x = np.loadtxt('./data/mnist_x', delimiter=' ')
m_y = np.loadtxt('./data/mnist_y')
#%%
# 数据集可视化
data = np.reshape(np.array(m_x[0], dtype=int), [28, 28])
plt.figure()
plt.imshow(data, cmap='gray')
#%%
# 将数据集分为训练集和测试集
ratio = 0.8
split = int(len(m_x) * ratio)
# 打乱数据
np.random.seed(0)
idx = np.random.permutation(np.arange(len(m_x))) #随机排序
m_x = m_x[idx]
m_y = m_y[idx]
x_train, x_test = m_x[:split], m_x[split:]
y_train, y_test = m_y[:split], m_y[split:]
#%%
#定义距离函数
def distance(x,y):
    return np.sqrt(np.sum(np.square(x-y)))

#%%
#定义KNN模型
class KNN:
    def __init__(self,k,label_num):
        self.k=k
        self.label_num=label_num #类别的数量
    def fit(self,x_train,y_train):
        self.x_train=x_train
        self.y_train=y_train
    def get_knn_indices(self,x): #获得距离目标样本最近的k个点的标签,a来做self_x.train
        dis=list(map(lambda a:distance(a,x),self.x_train))
        knn_indices=np.argsort(dis) #对距离排序,在选择k个出来
        knn_indices=knn_indices[:self.k]#标签
        return knn_indices
     def get_label(self,x):#计算k个点中,样本的标签数量是多少
         knn_indices=self.get_knn_indices(x)
         label_statistic=np.zeros(shape=[self.label_num])
         for index in knn_indices:
             label=int(self.y_train[index])
             label_statistic[label]+=1
         return np.argmax(label_statistic) #找出最大的类别
     def predict(self,x_test):
         predicted_test_labels=np.zeros(shape=[len(x_test)],dtype=int)
         for i,x in enumerate(x_test): #枚举
             predicted_test_labels[i]=self.get_label(x)
         return predicted_test_labels

#%%
for k in range(1,10):
    knn=KNN(k,label_num=10)
    knn.fit(x_train,y_train)
    predicted_labels=knn.predict(x_test)
    accuracy=np.mean(predicted_labels==y_test)
    print(f'k的取值为{k},预测准确率为{accuracy*100:.lf}%')
相关推荐
LBuffer3 小时前
破解入门学习笔记题四十六
数据库·笔记·学习
Blossom.1185 小时前
移动端部署噩梦终结者:动态稀疏视觉Transformer的量化实战
java·人工智能·python·深度学习·算法·机器学习·transformer
月下倩影时5 小时前
视觉进阶篇——机器学习训练过程(手写数字识别,量大管饱需要耐心)
人工智能·学习·机器学习
hssfscv8 小时前
JAVA学习笔记——集合的概念和习题
笔记·学习
生信大表哥10 小时前
贝叶斯共识聚类(BCC)
机器学习·数据挖掘·聚类
摇滚侠11 小时前
Vue 项目实战《尚医通》,预约挂号的路由与静态搭建,笔记36
javascript·vue.js·笔记
三品吉他手会点灯11 小时前
STM32F103学习笔记-16-RCC(第4节)-使用 HSI 配置系统时钟并用 MCO 监控系统时钟
笔记·stm32·单片机·嵌入式硬件·学习
Lester_110111 小时前
嵌入式学习笔记 - 关于看门狗定时器的喂狗的操作放在中断还是放在主循环
笔记·单片机·学习
AA陈超13 小时前
ASC学习笔记0017:返回此能力系统组件的所有属性列表
c++·笔记·学习·ue5·虚幻引擎
谅望者13 小时前
数据分析笔记07:Python编程语言介绍
大数据·数据库·笔记·python·数据挖掘·数据分析