LLM学习笔记

Q1:SFT时,计算LOSS

​ LLM是自回归生成模型,每次只会生成一个 token,难道 SFT 时,对于一个 (L, D) 的数据,要调用 L 次LLM去计算loss?

A1:

​ 在每个前向传播过程,模型一次性生成整个序列的概率分布,而不是逐个生成令牌。对于一个(L, D)的输入,那么Attention后,我们还是会得到一个(L, D)输出。只不过(i, D)这个向量中存着1~i中间所有的信息,那么用它就可以生成第 i + 1 个位置的内容。这也是为什么generate函数中每次会取 logits[:, -1] 去生成新的内容。

Q2: SFT时,数据为什么prompt+input+output

​ LLM是自回归生成模型,在训练时候为什么不是用 prompt + input 作为输入,然后得到 output 再去与真实的 label 计算 loss 更新参数呢?

A2:

​ 首先,如果要是像问题中这种策略去训练,一来每次要调用 l e n g t h o u t p u t length_{output} lengthoutput 次模型,二来模型生成的内容和 label 长度不一定一样,计算 loss 会出问题。其中这主要是因为我们在计算loss时,pytorch中要求loss_function(input, label)中的 input, label 的shape要一致。然后为了加速收敛,这里其实是一种teacher force 的策略,就在第i个位置,我们会得到一个hidden_state,然后第i+1个位置的token应该由这个hidden_state去生成,但是我们强制让第i+1个位置的tokenlabel中这个位置的token一样,也就是在相对正确的环境下再去生成生成第i+1个位置的hidden_state

Q3:SFT时,构造lable

​ SFT时,构造的lable为什么要把prompt+input部分mask掉。

A3:

​ 像Q1中那样,我们生成的时候是一次性把整个序列的概率分布拿到。然后我们其实不想模型去学会对齐prompt+input这部分的能力(因为没用),所以把prompt+input mask 掉,只计算output部分的loss。

相关推荐
wdfk_prog12 分钟前
[Linux]学习笔记系列 --[drivers][base]map
linux·笔记·学习
浅念-14 分钟前
链表经典面试题目
c语言·数据结构·经验分享·笔记·学习·算法
石像鬼₧魂石39 分钟前
Windows Server 2003 域控制器靶机搭建与渗透环境配置手册
linux·windows·学习
啥都会点的大秀1 小时前
声学仿真学习笔记
笔记·学习
好奇龙猫1 小时前
【AI学习-comfyUI学习-三十六节-黑森林-融合+扩图工作流-各个部分学习】
人工智能·学习
不会代码的小猴2 小时前
Linux环境编程第三天笔记
linux·笔记
狐572 小时前
2026-01-18-LeetCode刷题笔记-1895-最大的幻方
笔记·算法·leetcode
:mnong2 小时前
通过手写识别数字可视化学习卷积神经网络原理
人工智能·学习·cnn
AI视觉网奇3 小时前
Epic linux 打包。
笔记·学习·ue5
biuyyyxxx3 小时前
Power Query学习笔记(一)
笔记·学习