LLM学习笔记

Q1:SFT时,计算LOSS

​ LLM是自回归生成模型,每次只会生成一个 token,难道 SFT 时,对于一个 (L, D) 的数据,要调用 L 次LLM去计算loss?

A1:

​ 在每个前向传播过程,模型一次性生成整个序列的概率分布,而不是逐个生成令牌。对于一个(L, D)的输入,那么Attention后,我们还是会得到一个(L, D)输出。只不过(i, D)这个向量中存着1~i中间所有的信息,那么用它就可以生成第 i + 1 个位置的内容。这也是为什么generate函数中每次会取 logits[:, -1] 去生成新的内容。

Q2: SFT时,数据为什么prompt+input+output

​ LLM是自回归生成模型,在训练时候为什么不是用 prompt + input 作为输入,然后得到 output 再去与真实的 label 计算 loss 更新参数呢?

A2:

​ 首先,如果要是像问题中这种策略去训练,一来每次要调用 l e n g t h o u t p u t length_{output} lengthoutput 次模型,二来模型生成的内容和 label 长度不一定一样,计算 loss 会出问题。其中这主要是因为我们在计算loss时,pytorch中要求loss_function(input, label)中的 input, label 的shape要一致。然后为了加速收敛,这里其实是一种teacher force 的策略,就在第i个位置,我们会得到一个hidden_state,然后第i+1个位置的token应该由这个hidden_state去生成,但是我们强制让第i+1个位置的tokenlabel中这个位置的token一样,也就是在相对正确的环境下再去生成生成第i+1个位置的hidden_state

Q3:SFT时,构造lable

​ SFT时,构造的lable为什么要把prompt+input部分mask掉。

A3:

​ 像Q1中那样,我们生成的时候是一次性把整个序列的概率分布拿到。然后我们其实不想模型去学会对齐prompt+input这部分的能力(因为没用),所以把prompt+input mask 掉,只计算output部分的loss。

相关推荐
并不会44 分钟前
常见 CSS 选择器用法
前端·css·学习·html·前端开发·css选择器
龙鸣丿1 小时前
Linux基础学习笔记
linux·笔记·学习
Nu11PointerException3 小时前
JAVA笔记 | ResponseBodyEmitter等异步流式接口快速学习
笔记·学习
亦枫Leonlew4 小时前
三维测量与建模笔记 - 3.3 张正友标定法
笔记·相机标定·三维重建·张正友标定法
考试宝4 小时前
国家宠物美容师职业技能等级评价(高级)理论考试题
经验分享·笔记·职场和发展·学习方法·业界资讯·宠物
黑叶白树6 小时前
简单的签到程序 python笔记
笔记·python
@小博的博客6 小时前
C++初阶学习第十弹——深入讲解vector的迭代器失效
数据结构·c++·学习
幸运超级加倍~7 小时前
软件设计师-上午题-15 计算机网络(5分)
笔记·计算机网络
南宫生7 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步8 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝