Lambda架构的三层 批处理层 加速层 服务层

Lambda架构是一种大数据处理架构,由Nathan Marz提出,它旨在处理大规模数据的批处理和实时处理问题。Lambda架构试图提供一种既能处理大量数据,又能提供低延迟查询和视图的系统。它主要由以下三层组成:

1. 批处理层(Batch Layer)

批处理层的目的是处理大量的历史数据。这一层负责存储和管理原始数据的不变性版本,并运行预定义的批处理作业来预计算结果。这些批处理作业通常是高延迟的(可能需要几分钟到几小时不等),但可以处理非常大的数据集,并确保数据的完整性和准确性。

批处理层通常使用分布式文件系统(如HDFS)来存储数据,并使用大数据处理框架(如Hadoop MapReduce或Apache Spark)来进行计算。

2. 加速层(Speed Layer)

速度层的主要目的是处理实时数据流,以便系统能够提供低延迟的数据视图。由于批处理层有较高的延迟,速度层补充了这一点,通过实时处理最近的数据更新来提供近乎实时的视图。速度层的输出通常是不完整的,并且只代表自上一次批处理作业以来发生的数据。

这一层通常使用流处理技术(如Apache Storm、Apache Flink或Kafka Streams)来处理即时数据流。

3. 服务层(Serving Layer)

服务层的作用是为用户查询提供响应。它将批处理层预计算的结果与速度层实时计算的结果合并,以提供一个全面的数据视图。服务层需要能够快速更新和查询,因此通常使用如NoSQL数据库(如Apache HBase或Cassandra)来支持这种需求。

在查询时,服务层会同时访问批处理层的预计算视图和速度层的实时视图,并将两者的结果合并以提供最终的查询结果。

Lambda架构的挑战

尽管Lambda架构在处理大规模数据系统的同时提供了批处理和实时处理的能力,但它也带来了一些挑战,如:

  • 复杂性:维护两套逻辑(批处理和实时处理)增加了系统的复杂性。
  • 数据延迟:批处理层可能会导致数据处理的延迟。
  • 资源消耗:运行两个系统(批处理和实时处理)需要更多的资源。

为了解决这些挑战,出现了一些替代架构,如Kappa架构,它只使用一个处理系统来处理实时数据流,同时也用于生成历史数据视图,从而减少了复杂性和资源消耗。

相关推荐
Curvatureflight5 小时前
GPT-4o Realtime 之后:全双工语音大模型如何改变下一代人机交互?
人工智能·语言模型·架构·人机交互
t***D2647 小时前
云原生架构
云原生·架构
jinxinyuuuus7 小时前
局域网文件传输:P2P架构中NAT穿透、打洞与数据安全协议
网络协议·架构·p2p
六行神算API-天璇9 小时前
架构实战:打造基于大模型的“混合搜索”系统,兼顾关键词与语义
人工智能·架构
顾林海10 小时前
从0到1搭建Android网络框架:别再让你的请求在"路上迷路"了
android·面试·架构
语落心生10 小时前
Apache Geaflow推理框架Geaflow-infer 解析系列(四)依赖管理
架构
云渠道商yunshuguoji10 小时前
亚马逊云渠道商:如何用 EC2 Auto Scaling 轻松应对流量洪峰?
架构
泉城老铁11 小时前
Vue2实现语音报警
前端·vue.js·架构
云渠道商yunshuguoji11 小时前
阿里云渠道商:如何选择高性价比阿里云GPU配置?
架构
Mr_万能胶12 小时前
到底原研药,来瞧瞧 Google 官方《Android API 设计指南》
android·架构·android studio