Lambda架构的三层 批处理层 加速层 服务层

Lambda架构是一种大数据处理架构,由Nathan Marz提出,它旨在处理大规模数据的批处理和实时处理问题。Lambda架构试图提供一种既能处理大量数据,又能提供低延迟查询和视图的系统。它主要由以下三层组成:

1. 批处理层(Batch Layer)

批处理层的目的是处理大量的历史数据。这一层负责存储和管理原始数据的不变性版本,并运行预定义的批处理作业来预计算结果。这些批处理作业通常是高延迟的(可能需要几分钟到几小时不等),但可以处理非常大的数据集,并确保数据的完整性和准确性。

批处理层通常使用分布式文件系统(如HDFS)来存储数据,并使用大数据处理框架(如Hadoop MapReduce或Apache Spark)来进行计算。

2. 加速层(Speed Layer)

速度层的主要目的是处理实时数据流,以便系统能够提供低延迟的数据视图。由于批处理层有较高的延迟,速度层补充了这一点,通过实时处理最近的数据更新来提供近乎实时的视图。速度层的输出通常是不完整的,并且只代表自上一次批处理作业以来发生的数据。

这一层通常使用流处理技术(如Apache Storm、Apache Flink或Kafka Streams)来处理即时数据流。

3. 服务层(Serving Layer)

服务层的作用是为用户查询提供响应。它将批处理层预计算的结果与速度层实时计算的结果合并,以提供一个全面的数据视图。服务层需要能够快速更新和查询,因此通常使用如NoSQL数据库(如Apache HBase或Cassandra)来支持这种需求。

在查询时,服务层会同时访问批处理层的预计算视图和速度层的实时视图,并将两者的结果合并以提供最终的查询结果。

Lambda架构的挑战

尽管Lambda架构在处理大规模数据系统的同时提供了批处理和实时处理的能力,但它也带来了一些挑战,如:

  • 复杂性:维护两套逻辑(批处理和实时处理)增加了系统的复杂性。
  • 数据延迟:批处理层可能会导致数据处理的延迟。
  • 资源消耗:运行两个系统(批处理和实时处理)需要更多的资源。

为了解决这些挑战,出现了一些替代架构,如Kappa架构,它只使用一个处理系统来处理实时数据流,同时也用于生成历史数据视图,从而减少了复杂性和资源消耗。

相关推荐
dajun1811234561 小时前
PC端中文免费在线跨职能泳道图制作工具
运维·架构·流程图·敏捷流程·交通物流
编程饭碗4 小时前
【DDD架构理解】
架构
是你的小橘呀6 小时前
零基础也能懂!React Hooks实战手册:useState/useEffect上手就会,告别类组件
前端·架构
ICT技术最前线6 小时前
企业 ICT 标准化传输架构规范
架构
踏浪无痕7 小时前
JobFlow:时间轮与滑动窗口的实战优化
后端·架构·开源
老前端的功夫9 小时前
TypeScript 类型守卫:从编译原理到高级模式
前端·javascript·架构·typescript
希望_睿智10 小时前
实战设计模式之中介者模式
c++·设计模式·架构
5G全域通10 小时前
面向5G复杂性的下一代运维技术体系:架构、工具与实践
大数据·运维·人工智能·5g·架构
!chen11 小时前
AWS服务搭建的全球服务架构
架构·云计算·aws
程序员侠客行11 小时前
Mybatis入门到精通 一
java·架构·mybatis