Lambda架构的三层 批处理层 加速层 服务层

Lambda架构是一种大数据处理架构,由Nathan Marz提出,它旨在处理大规模数据的批处理和实时处理问题。Lambda架构试图提供一种既能处理大量数据,又能提供低延迟查询和视图的系统。它主要由以下三层组成:

1. 批处理层(Batch Layer)

批处理层的目的是处理大量的历史数据。这一层负责存储和管理原始数据的不变性版本,并运行预定义的批处理作业来预计算结果。这些批处理作业通常是高延迟的(可能需要几分钟到几小时不等),但可以处理非常大的数据集,并确保数据的完整性和准确性。

批处理层通常使用分布式文件系统(如HDFS)来存储数据,并使用大数据处理框架(如Hadoop MapReduce或Apache Spark)来进行计算。

2. 加速层(Speed Layer)

速度层的主要目的是处理实时数据流,以便系统能够提供低延迟的数据视图。由于批处理层有较高的延迟,速度层补充了这一点,通过实时处理最近的数据更新来提供近乎实时的视图。速度层的输出通常是不完整的,并且只代表自上一次批处理作业以来发生的数据。

这一层通常使用流处理技术(如Apache Storm、Apache Flink或Kafka Streams)来处理即时数据流。

3. 服务层(Serving Layer)

服务层的作用是为用户查询提供响应。它将批处理层预计算的结果与速度层实时计算的结果合并,以提供一个全面的数据视图。服务层需要能够快速更新和查询,因此通常使用如NoSQL数据库(如Apache HBase或Cassandra)来支持这种需求。

在查询时,服务层会同时访问批处理层的预计算视图和速度层的实时视图,并将两者的结果合并以提供最终的查询结果。

Lambda架构的挑战

尽管Lambda架构在处理大规模数据系统的同时提供了批处理和实时处理的能力,但它也带来了一些挑战,如:

  • 复杂性:维护两套逻辑(批处理和实时处理)增加了系统的复杂性。
  • 数据延迟:批处理层可能会导致数据处理的延迟。
  • 资源消耗:运行两个系统(批处理和实时处理)需要更多的资源。

为了解决这些挑战,出现了一些替代架构,如Kappa架构,它只使用一个处理系统来处理实时数据流,同时也用于生成历史数据视图,从而减少了复杂性和资源消耗。

相关推荐
道 心12 分钟前
[特殊字符] YOLO11 → YOLO26 架构级进化全解析
架构
TangGeeA2 小时前
从“工具”到“灵魂”:深度解构 Claude Code 的 Agent、Skills 与 MCP 架构哲学
架构·ai编程
y***n6142 小时前
springboot项目架构
spring boot·后端·架构
Lim小刘3 小时前
Amazon Bedrock AgentCore + Strands SDK:企业级代理架构实战指南
架构·amazon
好想来前端3 小时前
私有化部署 LLM 时,别再用 Nginx 硬扛流式请求了 —— 推荐一个专为 vLLM/TGI 设计的高性能网关
后端·架构·github
乾元4 小时前
构建你的个人「网络 AI 实验室」——硬件、模拟器与数据集清单
运维·网络·人工智能·网络协议·架构
王旭晨5 小时前
【高并发架构】从 0 到亿,从单机部署到 K8s 编排:高并发架构的 8 级演进之路
容器·架构·kubernetes
小二·5 小时前
Python Web 开发进阶实战:微前端架构初探 —— 基于 Webpack Module Federation 的 Vue 微应用体系
前端·python·架构
Python_Study20256 小时前
制造业企业如何构建高效数据采集系统:从挑战到实践
大数据·网络·数据结构·人工智能·架构
小陈phd6 小时前
langGraph从入门到精通(三)——基于LangGraph的智能问答系统开发:Python单代理架构实战
开发语言·python·架构