Lambda架构的三层 批处理层 加速层 服务层

Lambda架构是一种大数据处理架构,由Nathan Marz提出,它旨在处理大规模数据的批处理和实时处理问题。Lambda架构试图提供一种既能处理大量数据,又能提供低延迟查询和视图的系统。它主要由以下三层组成:

1. 批处理层(Batch Layer)

批处理层的目的是处理大量的历史数据。这一层负责存储和管理原始数据的不变性版本,并运行预定义的批处理作业来预计算结果。这些批处理作业通常是高延迟的(可能需要几分钟到几小时不等),但可以处理非常大的数据集,并确保数据的完整性和准确性。

批处理层通常使用分布式文件系统(如HDFS)来存储数据,并使用大数据处理框架(如Hadoop MapReduce或Apache Spark)来进行计算。

2. 加速层(Speed Layer)

速度层的主要目的是处理实时数据流,以便系统能够提供低延迟的数据视图。由于批处理层有较高的延迟,速度层补充了这一点,通过实时处理最近的数据更新来提供近乎实时的视图。速度层的输出通常是不完整的,并且只代表自上一次批处理作业以来发生的数据。

这一层通常使用流处理技术(如Apache Storm、Apache Flink或Kafka Streams)来处理即时数据流。

3. 服务层(Serving Layer)

服务层的作用是为用户查询提供响应。它将批处理层预计算的结果与速度层实时计算的结果合并,以提供一个全面的数据视图。服务层需要能够快速更新和查询,因此通常使用如NoSQL数据库(如Apache HBase或Cassandra)来支持这种需求。

在查询时,服务层会同时访问批处理层的预计算视图和速度层的实时视图,并将两者的结果合并以提供最终的查询结果。

Lambda架构的挑战

尽管Lambda架构在处理大规模数据系统的同时提供了批处理和实时处理的能力,但它也带来了一些挑战,如:

  • 复杂性:维护两套逻辑(批处理和实时处理)增加了系统的复杂性。
  • 数据延迟:批处理层可能会导致数据处理的延迟。
  • 资源消耗:运行两个系统(批处理和实时处理)需要更多的资源。

为了解决这些挑战,出现了一些替代架构,如Kappa架构,它只使用一个处理系统来处理实时数据流,同时也用于生成历史数据视图,从而减少了复杂性和资源消耗。

相关推荐
稻草人22221 天前
java Excel 导出 ,如何实现八倍效率优化,以及代码分层,方法封装
后端·架构
数据智能老司机1 天前
精通 Python 设计模式——创建型设计模式
python·设计模式·架构
数据智能老司机1 天前
精通 Python 设计模式——SOLID 原则
python·设计模式·架构
bobz9652 天前
k8s svc 实现的技术演化:iptables --> ipvs --> cilium
架构
云舟吖2 天前
基于 electron-vite 实现一个 RPA 网页自动化工具
前端·架构
brzhang2 天前
当AI接管80%的执行,你“不可替代”的价值,藏在这20%里
前端·后端·架构
Lei活在当下2 天前
【业务场景架构实战】4. 支付状态分层流转的设计和实现
架构·android jetpack·响应式设计
架构师沉默2 天前
设计多租户 SaaS 系统,如何做到数据隔离 & 资源配额?
java·后端·架构
kfyty7252 天前
不依赖第三方,不销毁重建,loveqq 框架如何原生实现动态线程池?
java·架构
刘立军2 天前
本地大模型编程实战(33)用SSE实现大模型的流式输出
架构·langchain·全栈