Lambda架构的三层 批处理层 加速层 服务层

Lambda架构是一种大数据处理架构,由Nathan Marz提出,它旨在处理大规模数据的批处理和实时处理问题。Lambda架构试图提供一种既能处理大量数据,又能提供低延迟查询和视图的系统。它主要由以下三层组成:

1. 批处理层(Batch Layer)

批处理层的目的是处理大量的历史数据。这一层负责存储和管理原始数据的不变性版本,并运行预定义的批处理作业来预计算结果。这些批处理作业通常是高延迟的(可能需要几分钟到几小时不等),但可以处理非常大的数据集,并确保数据的完整性和准确性。

批处理层通常使用分布式文件系统(如HDFS)来存储数据,并使用大数据处理框架(如Hadoop MapReduce或Apache Spark)来进行计算。

2. 加速层(Speed Layer)

速度层的主要目的是处理实时数据流,以便系统能够提供低延迟的数据视图。由于批处理层有较高的延迟,速度层补充了这一点,通过实时处理最近的数据更新来提供近乎实时的视图。速度层的输出通常是不完整的,并且只代表自上一次批处理作业以来发生的数据。

这一层通常使用流处理技术(如Apache Storm、Apache Flink或Kafka Streams)来处理即时数据流。

3. 服务层(Serving Layer)

服务层的作用是为用户查询提供响应。它将批处理层预计算的结果与速度层实时计算的结果合并,以提供一个全面的数据视图。服务层需要能够快速更新和查询,因此通常使用如NoSQL数据库(如Apache HBase或Cassandra)来支持这种需求。

在查询时,服务层会同时访问批处理层的预计算视图和速度层的实时视图,并将两者的结果合并以提供最终的查询结果。

Lambda架构的挑战

尽管Lambda架构在处理大规模数据系统的同时提供了批处理和实时处理的能力,但它也带来了一些挑战,如:

  • 复杂性:维护两套逻辑(批处理和实时处理)增加了系统的复杂性。
  • 数据延迟:批处理层可能会导致数据处理的延迟。
  • 资源消耗:运行两个系统(批处理和实时处理)需要更多的资源。

为了解决这些挑战,出现了一些替代架构,如Kappa架构,它只使用一个处理系统来处理实时数据流,同时也用于生成历史数据视图,从而减少了复杂性和资源消耗。

相关推荐
梦梦代码精2 小时前
BuildingAI vs Dify vs 扣子:三大开源智能体平台架构风格对比
开发语言·前端·数据库·后端·架构·开源·推荐算法
小程故事多_804 小时前
AI Agent进阶架构:用渐进式披露驯服复杂性
人工智能·架构
百***78754 小时前
Grok-4.1技术深度解析:双版本架构突破与Python API快速集成指南
大数据·python·架构
谢尔登5 小时前
Vue3 响应式系统——computed 和 watch
前端·架构
Francek Chen6 小时前
【大数据基础】大数据处理架构Hadoop:01 Hadoop概述
大数据·hadoop·分布式·架构
edisao7 小时前
六、 读者高频疑问解答 & 架构价值延伸
大数据·开发语言·人工智能·科技·架构·php
五度易链-区域产业数字化管理平台9 小时前
五度易链企业数据服务架构思考:从“存数据”到“用数据”的全周期解决方案
大数据·人工智能·架构
CRMEB9 小时前
2026年开源电商系统技术实测榜:从架构到适配的全维度解析
架构·开源
a程序小傲10 小时前
蚂蚁Java面试被问:向量数据库的相似度搜索和索引构建
开发语言·后端·python·架构·flask·fastapi
喜欢吃豆11 小时前
企业级 AI 系统分层存储架构深度研究报告
人工智能·架构·大模型·2025博客之星