python中使用缓存技术

functools.cache 是 Python 3.9 中引入的一个装饰器,用于缓存函数的返回值,以便在相同的参数输入下,可以直接返回缓存的结果,而不必重新计算。这对于那些在相同输入下计算结果相同的函数来说非常有用。

使用 `functools.cache` 装饰器可以在函数的运行时动态地缓存结果,这样可以提高函数的执行速度,尤其是当函数的计算开销很大时。它在使用递归或者其他需要计算相同值多次的情况下尤其有用。

以下是一个简单的示例,演示了如何使用 `functools.cache` 装饰器:

python 复制代码
import time
from functools import cache

@cache
def add(x):
    print(f"输入的数据是{x}...")
    time.sleep(2)
    return x+1

while True:
    data = int(input(">>...."))
    print(add(data))

在上面的示例中,`add函数使用了 `functools.cache` 装饰器,这意味着在第一次计算 add 的结果后,结果将被缓存,并在下一次调用 `fibonacci(n)` 时直接返回缓存的结果,而不必重新计算。

需要注意的是,`functools.cache` 是在 Python 3.9 中引入的,如果您的 Python 版本较低,可能需要考虑其他缓存方案,比如使用 `functools.lru_cache`。还有就是这个示例中的"

复制代码
print(f"输入的数据是{x}...")",它只会再第一次打印,如果下次再次执行相同结构,函数会直接返回结果,不会去执行里面的代码。这点是要注意的。
相关推荐
青云交1 天前
Java 大视界 -- 基于 Java+Redis Cluster 构建分布式缓存系统:实战与一致性保障(444)
java·redis·缓存·缓存穿透·分布式缓存·一致性保障·java+redis clus
三不原则1 天前
故障案例:模型推理响应慢,排查 Redis 缓存集群问题
数据库·redis·缓存
wsx_iot1 天前
缓存问题相关
缓存
小北方城市网2 天前
分布式锁实战指南:从选型到落地,避开 90% 的坑
java·数据库·redis·分布式·python·缓存
小夏卷编程2 天前
jeecg boot 路由缓存失效问题
vue.js·缓存
冰冰菜的扣jio2 天前
Redis缓存中三大问题——穿透、击穿、雪崩
java·redis·缓存
oMcLin2 天前
如何在 AlmaLinux 9 上配置并优化 Redis 集群,支持高并发的实时数据缓存与快速查询?
数据库·redis·缓存
洛阳纸贵2 天前
Redis
数据库·redis·缓存
梭七y2 天前
【力扣hot100题】(133)LRU缓存
leetcode·缓存·哈希算法
xiaolyuh1232 天前
Caffeine 缓存详解
缓存