python中使用缓存技术

functools.cache 是 Python 3.9 中引入的一个装饰器,用于缓存函数的返回值,以便在相同的参数输入下,可以直接返回缓存的结果,而不必重新计算。这对于那些在相同输入下计算结果相同的函数来说非常有用。

使用 `functools.cache` 装饰器可以在函数的运行时动态地缓存结果,这样可以提高函数的执行速度,尤其是当函数的计算开销很大时。它在使用递归或者其他需要计算相同值多次的情况下尤其有用。

以下是一个简单的示例,演示了如何使用 `functools.cache` 装饰器:

python 复制代码
import time
from functools import cache

@cache
def add(x):
    print(f"输入的数据是{x}...")
    time.sleep(2)
    return x+1

while True:
    data = int(input(">>...."))
    print(add(data))

在上面的示例中,`add函数使用了 `functools.cache` 装饰器,这意味着在第一次计算 add 的结果后,结果将被缓存,并在下一次调用 `fibonacci(n)` 时直接返回缓存的结果,而不必重新计算。

需要注意的是,`functools.cache` 是在 Python 3.9 中引入的,如果您的 Python 版本较低,可能需要考虑其他缓存方案,比如使用 `functools.lru_cache`。还有就是这个示例中的"

复制代码
print(f"输入的数据是{x}...")",它只会再第一次打印,如果下次再次执行相同结构,函数会直接返回结果,不会去执行里面的代码。这点是要注意的。
相关推荐
源代码•宸4 小时前
分布式缓存-GO(分布式算法之一致性哈希、缓存对外服务化)
开发语言·经验分享·分布式·后端·算法·缓存·golang
code bean5 小时前
【CMake】为什么需要清理 CMake 缓存文件?深入理解 CMake 生成器切换机制
java·spring·缓存
武子康7 小时前
Java-193 Spymemcached 深入解析:线程模型、Sharding 与序列化实践全拆解
java·开发语言·redis·缓存·系统架构·memcached·guava
xinyu_Jina7 小时前
动态媒体资源解析器:PWA、离线缓存与用户数据隐私的架构设计
缓存·媒体
闲人编程10 小时前
中间件开发与生命周期管理
缓存·中间件·生命周期·日志·扩展·codecapsule
RoboWizard14 小时前
双接口移动固态硬盘兼容性怎么样?
人工智能·缓存·智能手机·电脑·金士顿
honortech18 小时前
外部连接 redis-server 相关配置
数据库·redis·缓存
不会写程序的未来程序员18 小时前
Redis 的内存回收机制详解
数据库·redis·缓存
不会写程序的未来程序员18 小时前
Redis 主从同步原理详解
数据库·redis·缓存
嘻哈baby18 小时前
Redis突然变慢,排查发现是BigKey惹的祸
数据库·redis·缓存