[LLM-Llama]在 MAC M1上体验Llama.cpp和通义千问Qwen 1.5-7B

Llama.cpp的主要目标是在各种硬件上(本地和云端)实现LLM推断,同时保持最小的设置和最先进的性能。

  • 纯C/C++实现,没有任何依赖关系
  • Apple芯片是一级的支持对象 - 通过ARM NEON、Accelerate和Metal框架进行优化
  • 对x86架构的AVX、AVX2和AVX512支持
  • 支持1.5位、2位、3位、4位、5位、6位和8位整数量化,以加快推断速度并减少内存使用
  • 为在NVIDIA GPU上运行LLMs而定制的CUDA内核(通过HIP支持AMD GPU)
  • Vulkan、SYCL和(部分)OpenCL后端支持
  • CPU+GPU混合推断,部分加速超过总VRAM容量的模型

而M1 上有GPU 芯片,因此让我们在 MAC M1 上运行大语言模型成为可能。

1. 下载

  1. 下载 llama.cpp
bash 复制代码
> git clone https://github.com/ggerganov/llama.cpp.git 
正克隆到 'llama.cpp'...
remote: Enumerating objects: 21605, done.
remote: Counting objects: 100% (6924/6924), done.
remote: Compressing objects: 100% (293/293), done.
remote: Total 21605 (delta 6761), reused 6711 (delta 6629), pack-reused 14681
接收对象中: 100% (21605/21605), 26.16 MiB | 3.31 MiB/s, 完成.
处理 delta 中: 100% (15230/15230), 完成.
  1. 下载通义千问1.5-7B模型
  • 安装git-lfs

    brew install git-lfs

  • 访问 hugging face 上 qwen 1.5 模型

这里我们使用 qwen 1.5 7B 的 chat 模型 huggingface.co/Qwen/Qwen1....

bash 复制代码
git clone https://huggingface.co/Qwen/Qwen1.5-7B-Chat

如果你git下载不了 huggingface,也可以考虑浏览器下载文件放到该目录中。据了解chat模型和base模型区别是base模型只能续写,而cgat模型是在后面加了一些对话数据训练的,从而能够回复问题。下载好之后,目录如下

diff 复制代码
drwxr-xr-x  17 evilkylin  staff         544  4  3 11:21 .
drwxr-xr-x  10 evilkylin  staff         320  4  3 11:21 ..
drwxr-xr-x  12 evilkylin  staff         384  4  3 09:46 .git
-rw-r--r--   1 evilkylin  staff        1519  4  3 09:46 .gitattributes
-rw-r--r--   1 evilkylin  staff        6896  4  3 09:46 LICENSE
-rw-r--r--   1 evilkylin  staff        4338  4  3 09:46 README.md
-rw-r--r--   1 evilkylin  staff         663  4  3 09:46 config.json
-rw-r--r--   1 evilkylin  staff         243  4  3 09:46 generation_config.json
-rw-r--r--   1 evilkylin  staff     1671839  4  3 09:46 merges.txt
-rw-r--r--@  1 evilkylin  staff  3988014264  4  3 10:24 model-00001-of-00004.safetensors
-rw-r--r--@  1 evilkylin  staff  3957749080  4  3 10:23 model-00002-of-00004.safetensors
-rw-r--r--@  1 evilkylin  staff  3957749112  4  3 10:20 model-00003-of-00004.safetensors
-rw-r--r--@  1 evilkylin  staff  3539181096  4  3 10:16 model-00004-of-00004.safetensors
-rw-r--r--   1 evilkylin  staff       31696  4  3 09:46 model.safetensors.index.json
-rw-r--r--   1 evilkylin  staff     7028015  4  3 09:46 tokenizer.json
-rw-r--r--   1 evilkylin  staff        1402  4  3 09:46 tokenizer_config.json
-rw-r--r--   1 evilkylin  staff     2776833  4  3 09:46 vocab.json

2. 编译llama.cpp

csharp 复制代码
> cd llama.cpp
> make
I ccache not found. Consider installing it for faster compilation.
I llama.cpp build info: 
I UNAME_S:   Darwin
I UNAME_P:   arm
I UNAME_M:   arm64
.....
cc -I. -Icommon -D_XOPEN_SOURCE=600 -D_DARWIN_C_SOURCE -DNDEBUG -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_METAL  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -Wunreachable-code-break -Wunreachable-code-return -Wdouble-promotion  -c tests/test-c.c -o tests/test-c.o

3. 安装llama 依赖

markdown 复制代码
> python3 -m pip install -r requirements.txt

因为我是格式化后更新到 MAC OS 14.4 了,所以 python 有点问题。使用 homebrew 安装的 python 现在都安装在/opt/homebrew/bin/ , 这里我们要做两个链接。

shell 复制代码
> ln -s /opt/homebrew/bin/python3.10 /opt/homebrew/bin/python3
> ln -s /opt/homebrew/bin/python /opt/homebrew/bin/python

> ln -sf pip3.10 /opt/homebrew/bin/pip3
> ln -sf pip3.10 /opt/homebrew/bin/pip

如果你使用 conda 也可以考虑建立虚拟环境,接下来安装依赖。

scss 复制代码
> python3 -m pip install -r requirements.txt
Collecting numpy~=1.24.4 (from -r ./requirements/requirements-convert.txt (line 1))
  Downloading numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl.metadata (5.6 kB)
...
Successfully installed MarkupSafe-2.1.5 certifi-2024.2.2 charset-normalizer-3.3.2 einops-0.7.0 filelock-3.13.3 fsspec-2024.3.1 gguf-0.6.0 huggingface-hub-0.22.2 idna-3.6 jinja2-3.1.3 mpmath-1.3.0 networkx-3.2.1 numpy-1.24.4 packaging-24.0 protobuf-4.25.3 pyyaml-6.0.1 regex-2023.12.25 requests-2.31.0 safetensors-0.4.2 sentencepiece-0.1.99 sympy-1.12 tokenizers-0.15.2 torch-2.1.2 tqdm-4.66.2 transformers-4.39.3 typing-extensions-4.10.0 urllib3-2.2.1

4. 转换 Qwen 模型为 GGUF

什么是 GGUF? GGUF是一种用于存储用于GGML推断和基于GGML的执行器的模型的文件格式。GGUF是一种二进制格式,旨在快速加载和保存模型,并易于阅读。传统上,模型是使用PyTorch或其他框架开发的,然后转换为GGUF以在GGML中使用。

GGUF是GGML、GGMF和GGJT的后继文件格式,旨在通过包含加载模型所需的所有信息来消除歧义。它还设计为可扩展的,因此可以向模型添加新信息而不会破坏兼容性,更多信息访问官方说明文档

Llama.cpp上是使用 convert.py, 但有人说 qwen 得用 convert-hf-to-gguf.py

注意:有同学在这里报错找不到文件之类的,注意执行该命令的时候python3 convert-hf-to-gguf.py ~/Projects/Qwen1.5-7B-Chat/ 后面的路径要改为你之前在第1.2节中下载Qwen1.5-7B-Chat的目录。

ini 复制代码
> python3 convert-hf-to-gguf.py ~/Projects/Qwen1.5-7B-Chat/
Loading model: Qwen1.5-7B-Chat
gguf: This GGUF file is for Little Endian only
Set model parameters
gguf: context length = 32768
gguf: embedding length = 4096
gguf: feed forward length = 11008
gguf: head count = 32
gguf: key-value head count = 32
gguf: rope theta = 1000000.0
gguf: rms norm epsilon = 1e-06
gguf: file type = 1
Set model tokenizer
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained
....
output_norm.weight, n_dims = 1, torch.bfloat16 --> float32
Model successfully exported to '/Users/xxxx/Projects/Qwen1.5-7B-Chat/ggml-model-f16.gguf'

可以看到他已经转为 F16 的 gguf 格式的模型了。

5. 量化模型

vbnet 复制代码
> ./quantize ~/Projects/Qwen1.5-7B-Chat/ggml-model-f16.gguf ./models/qwen1.5-chat-ggml-model-Q4_K_M.gguf Q4_K_M
main: build = 2585 (f87f7b89)
main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.4.0
main: quantizing '/Users/evilkylin/Projects/Qwen1.5-7B-Chat/ggml-model-f16.gguf' to './models/qwen1.5-chat-ggml-model-Q4_K_M.gguf' as Q4_K_M
llama_model_loader: loaded meta data with 19 key-value pairs and 387 tensors from /Users/evilkylin/Projects/Qwen1.5-7B-Chat/ggml-model-f16.gguf (version GGUF V3 (latest))
....
llama_model_quantize_internal: model size  = 14728.52 MB
llama_model_quantize_internal: quant size  =  4540.59 MB

main: quantize time = 72620.01 ms
main:    total time = 72620.01 ms

我们将gguf 的模型量化到INT4,这样模型会从大约 14.7G减少到 4.4GB 左右。

6. 运行测试

sql 复制代码
> ./main -m ./models/mymodels/qwen1.5-chat-ggml-model-Q4_K_M.gguf -n 128
Log start
main: build = 2585 (f87f7b89)
main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.4.0
main: seed  = 1712117398
llama_model_loader: loaded meta data with 20 key-value pairs and 387 tensors from ./models/mymodels/qwen1.5-chat-ggml-model-Q4_K_M.gguf (version GGUF V3 (latest))
....
压力容器的定期检查(包括外部检查、内部检查和全面检查)分为每()年1次和每3~6年1次两种。
A. 1
B. 2
C. 3
D. 5 答案:D微量元素在生物体内虽少,但对生物体的生命活动起着非常重要的作用,下列选项中都属于微量元素的是(  ) A. 钙、铁、锌 B. 钾、镁、氟 C. 锌、硒、碘 D. 碳、氢、氧

钙、钾、
llama_print_timings:        load time =    8845.23 ms
llama_print_timings:      sample time =      31.94 ms /   128 runs   (    0.25 ms per token,  4007.51 tokens per second)
llama_print_timings: prompt eval time =       0.00 ms /     1 tokens (    0.00 ms per token,      inf tokens per second)
llama_print_timings:        eval time =   10612.83 ms /   128 runs   (   82.91 ms per token,    12.06 tokens per second)
llama_print_timings:       total time =   10899.90 ms /   129 tokens
ggml_metal_free: deallocating
Log end

看起来是自动化跑了个测试, 看输出显示大约 12.06 tokens 每秒,也就是说应该每秒至少 12 个字,但由于编码原因有可能字更多。 接下来我们进入对话模型。如何启动呢?我们这里查看example/alpaca.sh 的启动方式,来编写启动 Qwen 模型命令。

bash 复制代码
#!/bin/bash

#
# Temporary script - will be removed in the future
#

cd `dirname $0`
cd ..

./main -m ./models/alpaca.13b.ggmlv3.q8_0.bin \
       --color \
       -f ./prompts/alpaca.txt \
       --ctx_size 2048 \
       -n -1 \
       -ins -b 256 \
       --top_k 10000 \
       --temp 0.2 \
       --repeat_penalty 1.1 \
       -t 7

那么 qwen 就是这样了,具体的参数可以参看官方说明。实际上 Qwen1.5官方文档的context window是标明支持大小32768。但我测试将ctx size 设置为32768会无法启动,大概是内存不够用,还是自己不断尝试修改吧。另外top k默认 40,这个参数的意思用来增加随机性的,因为预测下一个token 时候的top k个选择,一般默认就行。我估计应该和 temp 有关系吧。-t是设置并发线程数,根据自己 cpu 核数设置。

vbnet 复制代码
> ./main -m ./models/mymodels/qwen1.5-chat-ggml-model-Q4_K_M.gguf --color --ctx_size 2048 -n -1 -ins -b 256 --top_k 30 --temp 0.2 --repeat_penalty 1.1 -t 7
Log start
main: build = 2585 (f87f7b89)
main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.4.0
main: seed  = 1712120436
llama_model_loader: loaded meta data with 20 key-value pairs and 387 tensors from ./models/mymodels/qwen1.5-chat-ggml-model-Q4_K_M.gguf (version GGUF V3 (latest))
....
== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to LLaMa.
 - To return control without starting a new line, end your input with '/'.
 - If you want to submit another line, end your input with '\'.
You are a helpful assistant.
> 你是谁
我是阿里云研发的大规模语言模型,我叫通义千问。

实际测试下来,输出确实很快,一点也不卡。 但是多次重复启动后,会直接退出,据说是 llama.cpp 出问题了,因此重新 make cleanmake就好了。

7. 像OpenAI一样输出

llama.cpp内置了一个c++写的快速,轻量级的http server,提供 OpenAI API一样的输入输出,还提供一个简单 web 前端来和 llama.cpp 交互。使用以下命令开启http server,测试了一下qwen 1.5 context window 开到 16384 在 m1 上会报内存不足,据了解token数量本身也会占用不少内存,和transformer本身的设计有关,具体原理就不展开了。当前开到 8192个token GPU显存就完全跑满了。

bash 复制代码
./server -m ./models/mymodels/qwen1.5-chat-ggml-model-Q4_K_M.gguf -c 8192 -n -1 -t 7
  • chat completion接口

request

vbnet 复制代码
curl --location 'http://localhost:8080/v1/chat/completions' \
--header 'accept: application/json' \
--header 'Content-Type: application/json' \
--data '{
  "model": "gpt-3.5-turbo",
  "messages": [
    {
      "role": "system",
      "content": "you are a helpful assitant"
    },
    {
      "role": "user",
      "content": "写一个笑话"
    }
  ],
  "stream": false
}'

response

swift 复制代码
{
    "choices": [
        {
            "finish_reason": "stop",
            "index": 0,
            "message": {
                "content": " Why did the tomato turn red?\n\nBecause it saw the salad dressing!\n\nI hope that brought a smile to your face. If you have any other questions or need assistance with something, feel free to ask!",
                "role": "assistant"
            }
        }
    ],
    "created": 1713099144,
    "model": "gpt-3.5-turbo",
    "object": "chat.completion",
    "usage": {
        "completion_tokens": 47,
        "prompt_tokens": 20,
        "total_tokens": 67
    },
    "id": "chatcmpl-jItjibb9dXIOO0YgrqwZHNxSeBfdBmlR"
}
  • embeddings

要返回 embedings需要在开启 server 的时候加上flag --embeddings

bash 复制代码
./server -m ./models/mymodels/qwen1.5-chat-ggml-model-Q4_K_M.gguf -c 8192 -n -1 -t 7 --embeddings

request

css 复制代码
curl --location 'http://localhost:8080/v1/embeddings' \
--header 'Authorization: Bearer $OPENAI_API_KEY' \
--header 'Content-Type: application/json' \
--data '{
    "input": "The food was delicious and the waiter...",
    "model": "text-embedding-ada-002",
    "encoding_format": "float"
  }'

response

json 复制代码
{
    "model": "text-embedding-ada-002",
    "object": "list",
    "usage": {
        "prompt_tokens": 0,
        "total_tokens": 0
    },
    "data": [
        {
            "embedding": [
                -0.005755452439188957,
                ....
                0.01070545706897974,
                0.011975807137787342
            ],
            "index": 0,
            "object": "embedding"
        }
    ]
}
  • Tokenize

request

css 复制代码
curl --location 'http://localhost:8080/tokenize' \
--header 'Content-Type: application/json' \
--data '{
    "content": "hello are you ok"
}'

response

yaml 复制代码
{
    "tokens": [
        6312,
        28709,
        460,
        368,
        3614
    ]
}
  • detokenize

request

css 复制代码
curl --location 'http://localhost:8080/detokenize' \
--header 'Content-Type: application/json' \
--data '{
    "tokens": [
        6312,
        28709,
        460,
        368,
        3614
    ]
}'

response

css 复制代码
{
    "content": " hello are you ok"
}
相关推荐
Hoper.J2 小时前
微调 BERT:实现抽取式问答
人工智能·深度学习·自然语言处理·llm·bert
知来者逆16 小时前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型
几米哥1 天前
如何构建高效的AI代理系统:LLM应用实践与最佳方案的深度解析
llm·aigc
测试者家园1 天前
ChatGPT生成接口文档实践案例(二)
软件测试·chatgpt·llm·测试用例·测试图书·质量效能·用chatgpt做测试
bastgia4 天前
Tokenformer: 下一代Transformer架构
人工智能·机器学习·llm
新智元4 天前
李飞飞谢赛宁:多模态 LLM「空间大脑」觉醒,惊现世界模型雏形!
人工智能·llm
RWKV元始智能4 天前
RWKV-7:极先进的大模型架构,长文本能力极强
人工智能·llm
zaim15 天前
计算机的错误计算(一百八十七)
人工智能·ai·大模型·llm·错误·正弦/sin·误差/error
张拭心5 天前
Google 提供的 Android 端上大模型组件:MediaPipe LLM 介绍
android·人工智能·llm
带电的小王5 天前
whisper.cpp: Android端测试 -- Android端手机部署音频大模型
android·智能手机·llm·whisper·音频大模型·whisper.cpp