分层存储的图片的3d显示

分层存储的图片叠层成为3d,并显示。

文件夹D:\mask内的分层存储的图像文件:

1、显示为3d点云:

python 复制代码
import open3d as o3d
import numpy as np
from PIL import Image


def convert_images_to_point_cloud(image_paths):
    points = []

    for i, image_path in enumerate(image_paths):
        img = Image.open(image_path)
        img_array = np.array(img)

        height, width = img_array.shape        

        for y in range(height):
            for x in range(width):
                if img_array[y][x] > 0:  # 假设非黑色点为感兴趣的点
                    points.append([x, y, i])  # 将 2D 像素点转换为 3D 点,高度使用索引值

    return points

# 替换为你实际存储图像的路径
image_paths = ['D:\\mask\\mask_1.PNG', 'D:\\mask\\mask_2.PNG', 'D:\\mask\\mask_3.PNG', 'D:\\mask\\mask_4.PNG', 'D:\\mask\\mask_5.PNG', 'D:\\mask\\mask_6.PNG', 'D:\\mask\\mask_7.PNG', 'D:\\mask\\mask_8.PNG', 'D:\\mask\\mask_9.PNG', 'D:\\mask\\mask_10.PNG', 'D:\\mask\\mask_11.PNG', 'D:\\mask\\mask_12.PNG']

points = convert_images_to_point_cloud(image_paths)
point_cloud = o3d.geometry.PointCloud()

point_cloud.points = o3d.utility.Vector3dVector(points)
o3d.visualization.draw_geometries([point_cloud])

2、将点云渲染为体素网格

python 复制代码
import open3d as o3d
import numpy as np
from PIL import Image


def convert_images_to_point_cloud(image_paths):
    points = []
    for i, image_path in enumerate(image_paths):
        img = Image.open(image_path)
        img_array = np.array(img)

        height, width = img_array.shape

        for y in range(height):
            for x in range(width):
                if img_array[y][x] > 0:  # 假设非黑色点为感兴趣的点
                    points.append([x, y, i])  # 将 2D 像素点转换为 3D 点,高度使用索引值

    return points

# 替换为你实际存储图像的路径
image_paths = ['D:\\mask\\mask_1.PNG', 'D:\\mask\\mask_2.PNG', 'D:\\mask\\mask_3.PNG', 'D:\\mask\\mask_4.PNG',
               'D:\\mask\\mask_5.PNG', 'D:\\mask\\mask_6.PNG', 'D:\\mask\\mask_7.PNG', 'D:\\mask\\mask_8.PNG',
               'D:\\mask\\mask_9.PNG', 'D:\\mask\\mask_10.PNG', 'D:\\mask\\mask_11.PNG', 'D:\\mask\\mask_12.PNG']

points = convert_images_to_point_cloud(image_paths)

point_cloud = o3d.geometry.PointCloud()
point_cloud.points = o3d.utility.Vector3dVector(points)

# 创建点云体素网格
voxel_size = 1
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(point_cloud, voxel_size=voxel_size)

# 显示体素网格,指定渲染模式为网格
o3d.visualization.draw_geometries([voxel_grid], mesh_show_wireframe=True)

持续更新

相关推荐
TG:@yunlaoda360 云老大16 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
心 爱心 爱16 小时前
Shape-Guided Dual-Memory Learning for 3D Anomaly Detection 论文精读
计算机视觉·3d·异常检测·工业异常检测·三维异常检测·多模态工业异常检测·二维异常检测
geobuilding1 天前
将大规模shp白模贴图转3dtiles倾斜摄影,并可单体化拾取建筑
算法·3d·智慧城市·数据可视化·贴图
美摄科技2 天前
什么是3D贴纸SDK?
3d
HelloRevit2 天前
快速入门 - Azure 数字孪生的 3D 场景工作室(预览版)入门
3d·flask·azure
CHOTEST中图仪器3 天前
3d光学轮廓仪如何局部测量标准台阶?
3d·光学轮廓仪·三维形貌·微观尺寸
前端_Danny4 天前
使用 ECharts + ECharts-GL 生成 3D 环形图
3d·信息可视化·echarts
学無芷境4 天前
Large-Scale 3D Medical Image Pre-training with Geometric Context Priors
人工智能·3d
暴风鱼划水4 天前
三维重建【4-A】3D Gaussian Splatting:代码解读
python·深度学习·3d·3dgs
老黄编程4 天前
pcl 3DSC特征描述符、对应关系可视化以及ICP配准
3d·pcl·3dsc·icp