Yolo-v5模型训练速度,与GeForce的AI算力描述

1.GeForce RTX3070 Ti官网参数

GeForce RTXTM 3070 Ti 和 RTX 3070 显卡采用第 2 代 NVIDIA RTX 架构 - NVIDIA Ampere 架构。该系列产品搭载专用的第 2 代 RT Core ,第 3 代 Tensor Core、全新的 SM 多单元流处理器以及高速显存,助您在高性能要求的游戏中所向披靡。

2.一处未知来源的评测表

3.另一处基于Ti3090跑yolov5的测试结果

3090量化到FP32,使用官方的Pytorch跑,完整的60 classes coco数据集一个是18.04小时。

Coco训练集大概是12万张图片,60 classes.

4.Yolov5实测数据

  • 运算环境:I5-12400
  • 数据集的规模:9000张图片;25.5万个标记框,5classes
  • 模型,训练环境Yolo-v5s, Pytorch, FP32, 5个类别
  • 1.5 hours/epochs
  • 结果:Optimizer stripped from runs\train\exp39\weights\last.pt, 14.3MB

附录 A 最简训练步骤

模型环境初始化的部分很简单,从略:

1.在yolov5 的data目录准备.yaml文件

相关数据集是在csdn下载的,大概6元钱。2276张图片。

train: ./smoker/images/train

val: ./smoker/images/val

nc: 1

names: ["smoker"]

2.将数据集放置在yolov5主目录内。smoker目录

3.修改train.py

def parse_opt(known=False):

parser = argparse.ArgumentParser()

parser.add_argument('--weights ', type=str, default='./yolov5-master/weights/yolov5s.pt', help='initial weights path')

parser.add_argument('--cfg ', type=str, default='./yolov5-master/models/yolov5s.yaml', help='model.yaml path')

parser.add_argument('--data ', type=str, default='./data/smoker.yaml' , help='dataset.yaml path')

parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')

parser.add_argument('--epochs ', type=int, default=2) # *300

普遍用的训练模型都是这个yolov5s,

Model Summary: 270 layers, 7022326 parameters, 7022326 gradients

7M个参数。梯度和参数是一回事,都是指一层一层的转换矩阵的总参数个数。

4.模型测试效果:

大概30分钟跑完一轮

相关推荐
中冕—霍格沃兹软件开发测试3 分钟前
探索性测试:思维驱动下的高效缺陷狩猎
人工智能·科技·开源·appium·bug
cnfalcon4 分钟前
ESP-IDF AI硬件开发技术问题记录
人工智能·esp-idf
陈佬昔没带相机5 分钟前
从罗永浩 x MiniMax 闫俊杰对谈中,一窥 AI 时代软件公司岗位变化
人工智能·程序员·敏捷开发
老马啸西风6 分钟前
成熟企业级技术平台-09-加密机 / 密钥管理服务 KMSS(Key Management & Security Service)
人工智能·深度学习·算法·职场和发展
2301_801821718 分钟前
前期工作总结
人工智能
Ulana26 分钟前
计算机基础10大高频考题解析
java·人工智能·算法
windfantasy199028 分钟前
NCT与GESP哪个更好?线上监考与线下考点的便利性对比
人工智能
执笔论英雄29 分钟前
【LORA】
人工智能
Jerryhut42 分钟前
Bev感知特征空间算法
人工智能
xian_wwq1 小时前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电