Yolo-v5模型训练速度,与GeForce的AI算力描述

1.GeForce RTX3070 Ti官网参数

GeForce RTXTM 3070 Ti 和 RTX 3070 显卡采用第 2 代 NVIDIA RTX 架构 - NVIDIA Ampere 架构。该系列产品搭载专用的第 2 代 RT Core ,第 3 代 Tensor Core、全新的 SM 多单元流处理器以及高速显存,助您在高性能要求的游戏中所向披靡。

2.一处未知来源的评测表

3.另一处基于Ti3090跑yolov5的测试结果

3090量化到FP32,使用官方的Pytorch跑,完整的60 classes coco数据集一个是18.04小时。

Coco训练集大概是12万张图片,60 classes.

4.Yolov5实测数据

  • 运算环境:I5-12400
  • 数据集的规模:9000张图片;25.5万个标记框,5classes
  • 模型,训练环境Yolo-v5s, Pytorch, FP32, 5个类别
  • 1.5 hours/epochs
  • 结果:Optimizer stripped from runs\train\exp39\weights\last.pt, 14.3MB

附录 A 最简训练步骤

模型环境初始化的部分很简单,从略:

1.在yolov5 的data目录准备.yaml文件

相关数据集是在csdn下载的,大概6元钱。2276张图片。

train: ./smoker/images/train

val: ./smoker/images/val

nc: 1

names: ["smoker"]

2.将数据集放置在yolov5主目录内。smoker目录

3.修改train.py

def parse_opt(known=False):

parser = argparse.ArgumentParser()

parser.add_argument('--weights ', type=str, default='./yolov5-master/weights/yolov5s.pt', help='initial weights path')

parser.add_argument('--cfg ', type=str, default='./yolov5-master/models/yolov5s.yaml', help='model.yaml path')

parser.add_argument('--data ', type=str, default='./data/smoker.yaml' , help='dataset.yaml path')

parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')

parser.add_argument('--epochs ', type=int, default=2) # *300

普遍用的训练模型都是这个yolov5s,

Model Summary: 270 layers, 7022326 parameters, 7022326 gradients

7M个参数。梯度和参数是一回事,都是指一层一层的转换矩阵的总参数个数。

4.模型测试效果:

大概30分钟跑完一轮

相关推荐
坐吃山猪9 分钟前
动手学深度学习03-线性神经网络
人工智能·深度学习·神经网络·动手学深度学习
技术与健康4 小时前
LLM实践系列:利用LLM重构数据科学流程03- LLM驱动的数据探索与清洗
大数据·人工智能·重构
张小九994 小时前
Foldseek快速蛋白质结构比对
人工智能
云卓SKYDROID5 小时前
无人机延时模块技术难点解析
人工智能·无人机·高科技·云卓科技·延迟摄像
神齐的小马5 小时前
机器学习 [白板推导](十三)[条件随机场]
人工智能·机器学习
荼蘼5 小时前
CUDA安装,pytorch库安装
人工智能·pytorch·python
@Wufan6 小时前
【机器学习】7 Linear regression
人工智能·机器学习·线性回归
cxr8287 小时前
自动化知识工作AI代理的工程与产品实现
运维·人工智能·自动化
whaosoft-1437 小时前
51c自动驾驶~合集18
人工智能
即兴小索奇7 小时前
2025年AI Agent规模化落地:企业级市场年增超60%,重构商业作业流程新路径
人工智能·ai·商业·ai商业洞察·即兴小索奇