Yolo-v5模型训练速度,与GeForce的AI算力描述

1.GeForce RTX3070 Ti官网参数

GeForce RTXTM 3070 Ti 和 RTX 3070 显卡采用第 2 代 NVIDIA RTX 架构 - NVIDIA Ampere 架构。该系列产品搭载专用的第 2 代 RT Core ,第 3 代 Tensor Core、全新的 SM 多单元流处理器以及高速显存,助您在高性能要求的游戏中所向披靡。

2.一处未知来源的评测表

3.另一处基于Ti3090跑yolov5的测试结果

3090量化到FP32,使用官方的Pytorch跑,完整的60 classes coco数据集一个是18.04小时。

Coco训练集大概是12万张图片,60 classes.

4.Yolov5实测数据

  • 运算环境:I5-12400
  • 数据集的规模:9000张图片;25.5万个标记框,5classes
  • 模型,训练环境Yolo-v5s, Pytorch, FP32, 5个类别
  • 1.5 hours/epochs
  • 结果:Optimizer stripped from runs\train\exp39\weights\last.pt, 14.3MB

附录 A 最简训练步骤

模型环境初始化的部分很简单,从略:

1.在yolov5 的data目录准备.yaml文件

相关数据集是在csdn下载的,大概6元钱。2276张图片。

train: ./smoker/images/train

val: ./smoker/images/val

nc: 1

names: ["smoker"]

2.将数据集放置在yolov5主目录内。smoker目录

3.修改train.py

def parse_opt(known=False):

parser = argparse.ArgumentParser()

parser.add_argument('--weights ', type=str, default='./yolov5-master/weights/yolov5s.pt', help='initial weights path')

parser.add_argument('--cfg ', type=str, default='./yolov5-master/models/yolov5s.yaml', help='model.yaml path')

parser.add_argument('--data ', type=str, default='./data/smoker.yaml' , help='dataset.yaml path')

parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')

parser.add_argument('--epochs ', type=int, default=2) # *300

普遍用的训练模型都是这个yolov5s,

Model Summary: 270 layers, 7022326 parameters, 7022326 gradients

7M个参数。梯度和参数是一回事,都是指一层一层的转换矩阵的总参数个数。

4.模型测试效果:

大概30分钟跑完一轮

相关推荐
Niuguangshuo17 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火17 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz258878217 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a18 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily18 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron158818 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong011718 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理
星爷AG I18 小时前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi
爱吃泡芙的小白白19 小时前
CNN参数量计算全解析:从基础公式到前沿优化
人工智能·神经网络·cnn·参数量
拐爷19 小时前
vibe‑coding 九阳神功之喂:把链接喂成“本地知识”,AI 才能稳定干活(API / 设计 / 报道 / 截图)
人工智能