normalizing flows vs 直方图规定化

  • normalizing flows名字的由来

The base density P ( z ) P(z) P(z) is usually defined as a multivariate standard normal (i.e., with

mean zero and identity covariance). Hence, the effect of each subsequent inverse layer is

to gradually move or "flow" the data density toward this normal distribution (figure 16.4).

This gives rise to the name "normalizing flows."

因此,应该翻译为正态化流。

  • 描述

The forward mapping is sometimes termed the generative direction. The base density

is usually chosen to be a standard normal distribution. Hence, the inverse mapping is

termed the normalizing direction since this takes the complex distribution over x x x and

turns it into a normal distribution over z z z .

  • 本质

Normalizing flows is the only model that can compute the exact log-likelihood of a new sample. Generative adversarial networks are not probabilistic, and both variational autoencoders and diffusion models can only return a lower bound on the likelihood.

normalizing flows是分布到分布的映射,本质同直方图规定化,直方图本质是图像灰度的概率分布。

通过构造一个可逆的深度神经网络,并学习参数,然后通过正向映射过程近似概率分布或图像生成。

逆向的过程如同扩散模型正向加噪的过程,从复杂分布映射到简单的多元标准正态分布,异曲同工。

相关推荐
禺垣4 小时前
支持向量机(SVM)分类
机器学习
禺垣4 小时前
协同过滤推荐算法
机器学习
这里有鱼汤4 小时前
90%的人都会搞错的XGBoost预测逻辑,未来到底怎么预测才对?
后端·机器学习
小庞在加油4 小时前
《dlib库中的聚类》算法详解:从原理到实践
c++·算法·机器学习·数据挖掘·聚类
蓝婷儿6 小时前
Python 机器学习核心入门与实战进阶 Day 1 - 分类 vs 回归
python·机器学习·分类
程序员阿超的博客8 小时前
Python 数据分析与机器学习入门 (八):用 Scikit-Learn 跑通第一个机器学习模型
python·机器学习·数据分析·scikit-learn·入门教程·python教程
平和男人杨争争12 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
归去_来兮12 小时前
支持向量机(SVM)分类
机器学习·支持向量机·分类
IT古董10 天前
【第二章:机器学习与神经网络概述】02.降维算法理论与实践-(1)主成分分析(Principal Component Analysis, PCA)
神经网络·算法·机器学习
大模型最新论文速读10 天前
Agent成本降低46%:缓存规划器的思路模板
人工智能·深度学习·机器学习·缓存·语言模型·自然语言处理