normalizing flows vs 直方图规定化

  • normalizing flows名字的由来

The base density P ( z ) P(z) P(z) is usually defined as a multivariate standard normal (i.e., with

mean zero and identity covariance). Hence, the effect of each subsequent inverse layer is

to gradually move or "flow" the data density toward this normal distribution (figure 16.4).

This gives rise to the name "normalizing flows."

因此,应该翻译为正态化流。

  • 描述

The forward mapping is sometimes termed the generative direction. The base density

is usually chosen to be a standard normal distribution. Hence, the inverse mapping is

termed the normalizing direction since this takes the complex distribution over x x x and

turns it into a normal distribution over z z z .

  • 本质

Normalizing flows is the only model that can compute the exact log-likelihood of a new sample. Generative adversarial networks are not probabilistic, and both variational autoencoders and diffusion models can only return a lower bound on the likelihood.

normalizing flows是分布到分布的映射,本质同直方图规定化,直方图本质是图像灰度的概率分布。

通过构造一个可逆的深度神经网络,并学习参数,然后通过正向映射过程近似概率分布或图像生成。

逆向的过程如同扩散模型正向加噪的过程,从复杂分布映射到简单的多元标准正态分布,异曲同工。

相关推荐
长桥夜波2 小时前
机器学习日报07
人工智能·机器学习
长桥夜波2 小时前
机器学习日报11
人工智能·机器学习
望十五江洋9 小时前
泊松分布的参数可加性
线性代数·机器学习·概率论
西西弗Sisyphus10 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
weixin_4296302610 小时前
第6章 支持向量机
算法·机器学习·支持向量机
背包客研究10 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习
大大dxy大大11 小时前
机器学习-KNN算法示例
人工智能·算法·机器学习
机器学习ing.12 小时前
U-Net保姆级教程:从原理到医学细胞分割实战(PyTorch版)!
人工智能·pytorch·python·深度学习·机器学习
HyperAI超神经13 小时前
在线教程丨端侧TTS新SOTA!NeuTTS-Air基于0.5B模型实现3秒音频克隆
人工智能·深度学习·机器学习·音视频·tts·音频克隆·neutts-air
Godspeed Zhao13 小时前
自动驾驶中的传感器技术76——Navigation(13)
人工智能·机器学习·自动驾驶