MapReduce复习

一、MapReduce概述

1.定义

是分布式运算框架

MapReduce:用户处理业务相关代码+自身的默认代码

2.优势劣势

优点:

1).易于编程。用户只关心业务逻辑,实现框架的接口。

2).良好的扩展性。可以动态增加服务器,解决计算资源不够的问题。

3).高容错性:任何一台挂掉,可以将任务转移到其它节点。

4).适合海量数据计算(TB/PB)几千台服务器共同计算。

劣势:

1).不擅长实时计算。mysql

2).不擅长流式计算。SparkStream flink适合。

3).不擅长DAG有向无环图计算。spark

3.Mapreduce核心思想-WordCount案例

例如:统计其中每一个单词出现的总次数(查询结果:a-p 一个文件,q-z一个文件)

Map阶段:分阶段

Reduce阶段:统计阶段

MapReduce程序运行时有三类进程:

1)、MrAppMaster:负责整个程序的过程调度及状态协调。

2)、MapTask:负责Map阶段整个数据处理流程处理。

3)、ReduceTask:负责Reduce阶段的整个处理流程。

说这是一个任务,一个job,一个mr都是一个事情

二、序列化

1.常用序列化进程:

除了String类型变成Text,其他类型都在Java类型基础上加Writable.

|------------|-----------------------|
| Java类型 | Hadoop Writable类型 |
| Boolean | BooleanWritable |
| Byte | ByteWritable |
| Int | IntWritable |
| Float | FloatWritable |
| Long | LongWritable |
| Double | DoubleWritable |
| String | Text |
| Map | MapWritable |
| Array | ArrayWritable |
| Null | NullWritable |

三、核心框架原理

1.输入数据InputFormat

2.shuffle

3.输出数据OutputFormat

4.join

5.ETL

hadoop作为etl工具之一。

清理的过程只需要在Mapper程序进行,不需要运行Reduce程序。

6.总结

四、压缩

1、有哪些压缩算法

2.特点

3.在生产上怎么用

五、常见的问题及解决方案

82-125跳过去

相关推荐
Empty_7771 小时前
Elasticsearch+Logstash+Filebeat+Kibana部署
大数据·elasticsearch·搜索引擎
武子康1 小时前
大数据-144 Apache Kudu:实时写 + OLAP 的架构、性能与集成
大数据·后端·nosql
敲上瘾2 小时前
Elasticsearch从入门到实践:核心概念到Kibana测试与C++客户端封装
大数据·linux·c++·elasticsearch·搜索引擎·全文检索
api_180079054603 小时前
请求、认证与响应数据解析:1688 商品 API 接口深度探秘
java·大数据·开发语言·mysql·数据挖掘
0和1的舞者5 小时前
网络通信的奥秘:网络层ip与路由详解(四)
大数据·网络·计算机网络·计算机·智能路由器·计算机科学与技术
WLJT1231231236 小时前
九寨:在山水间触摸生活的诗意
大数据·生活
Elastic 中国社区官方博客9 小时前
在 Elasticsearch 中使用 Mistral Chat completions 进行上下文工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
橙色云-智橙协同研发10 小时前
从 CAD 图纸到 Excel 数据:橙色云智橙 PLM 打造制造企业数字化协同新模式
大数据·功能测试·云原生·cad·plm·云plm·bom提取
喝可乐的希饭a11 小时前
Elasticsearch 的 Routing 策略详解
大数据·elasticsearch·搜索引擎
TDengine (老段)13 小时前
TDengine 字符串函数 CHAR 用户手册
java·大数据·数据库·物联网·时序数据库·tdengine·涛思数据