MapReduce复习

一、MapReduce概述

1.定义

是分布式运算框架

MapReduce:用户处理业务相关代码+自身的默认代码

2.优势劣势

优点:

1).易于编程。用户只关心业务逻辑,实现框架的接口。

2).良好的扩展性。可以动态增加服务器,解决计算资源不够的问题。

3).高容错性:任何一台挂掉,可以将任务转移到其它节点。

4).适合海量数据计算(TB/PB)几千台服务器共同计算。

劣势:

1).不擅长实时计算。mysql

2).不擅长流式计算。SparkStream flink适合。

3).不擅长DAG有向无环图计算。spark

3.Mapreduce核心思想-WordCount案例

例如:统计其中每一个单词出现的总次数(查询结果:a-p 一个文件,q-z一个文件)

Map阶段:分阶段

Reduce阶段:统计阶段

MapReduce程序运行时有三类进程:

1)、MrAppMaster:负责整个程序的过程调度及状态协调。

2)、MapTask:负责Map阶段整个数据处理流程处理。

3)、ReduceTask:负责Reduce阶段的整个处理流程。

说这是一个任务,一个job,一个mr都是一个事情

二、序列化

1.常用序列化进程:

除了String类型变成Text,其他类型都在Java类型基础上加Writable.

|------------|-----------------------|
| Java类型 | Hadoop Writable类型 |
| Boolean | BooleanWritable |
| Byte | ByteWritable |
| Int | IntWritable |
| Float | FloatWritable |
| Long | LongWritable |
| Double | DoubleWritable |
| String | Text |
| Map | MapWritable |
| Array | ArrayWritable |
| Null | NullWritable |

三、核心框架原理

1.输入数据InputFormat

2.shuffle

3.输出数据OutputFormat

4.join

5.ETL

hadoop作为etl工具之一。

清理的过程只需要在Mapper程序进行,不需要运行Reduce程序。

6.总结

四、压缩

1、有哪些压缩算法

2.特点

3.在生产上怎么用

五、常见的问题及解决方案

82-125跳过去

相关推荐
qq_124987075315 分钟前
基于深度学习的蘑菇种类识别系统的设计与实现(源码+论文+部署+安装)
java·大数据·人工智能·深度学习·cnn·cnn算法
泰迪智能科技23 分钟前
新疆高校大数据人工智能实验室建设案例
大数据·人工智能
Light6032 分钟前
数据战争的星辰大海:从纷争到融合,五大核心架构的终局之战与AI新纪元
大数据·人工智能·数据治理·湖仓一体·数据中台·数据架构·选型策略
qq_348231851 小时前
市场快评 · 今日复盘20251231
大数据
小北方城市网1 小时前
Python + 前后端全栈进阶课程(共 10 节|完整版递进式|从技术深化→项目落地→就业进阶,无缝衔接基础课)
大数据·开发语言·网络·python·数据库架构
喜欢编程的小菜鸡2 小时前
2025:中国大数据行业的“价值觉醒”之年——从规模基建到效能释放的历史性转折
大数据
策知道2 小时前
从“抗旱保苗”到“修渠引水”:读懂五年财政政策的变奏曲
大数据·数据库·人工智能·搜索引擎·政务
XC131489082672 小时前
法律行业获客,如何用科技手段突破案源瓶颈的实操方法
大数据·人工智能·科技
深圳市恒星物联科技有限公司2 小时前
恒星物联亮相湖南城市生命线安全工程培训会展会
大数据·数据库·物联网
zgl_200537792 小时前
ZGLanguage 解析SQL数据血缘 之 提取select语句中的源表名
大数据·数据库·c++·数据仓库·sql·数据库开发·etl