numpy - array(1)

一维数据:向量

二位数据:矩阵
维度超过三维的数据:张量
这些数据在numpy中统称array

(1)使用穷举法创建多为数据,接受列表或者元组类型的数据

复制代码
a = numpy.array([1, 2, 3])
b = numpy.array([[1, 2, 3], (4, 5, 6), [7, 8, 9]])

(2)创建所有元素为0的array

def zeros(shape, dtype=None, order='C', like=None)

shape:形状参数提供数据的维度尺寸,维度从左至右依次为 最外侧维度->最内侧维度(最大维度->最小维度)

dtype:数据元素类型

order: {'C', 'F'}可选,行优先(C-style),列优先(Fortran-style)

复制代码
zero_data = np.zeros((2, 3, 5))   提供了shape(形状)参数

(3)创建所有元素为1的array

ones(shape, dtype=None, order='C', *, like=None)

复制代码
one_data = np.ones((3, 4, 7, 2))

(4)空array,即数组的元素不初始化,而是包含随机数据,切默认类型为float

empty(shape, dtype=float, order='C', *, like=None)

复制代码
empty_data = np.empty((3, 4))

(5)步进array(只能是向量),区间左闭右开

arange(start, stop, step, dtype=None, *, like=None)

复制代码
arange_array = np.arange(10, 30, 5)

(6)reshape(),重新定义数据的形状。

-1:未知尺寸,表示自动识别所在维度的大小,所以reshape(-1, 1)常用于将一个向量重构成一个二维一列的矩阵(立起来);使用-1不能超过1个。

复制代码
t_array = arange_array.reshape(-1, 1)
t1_array = empty_data.reshape(2, -1, 3)

(7)array的属性

维度:ndim

复制代码
ndim1 = t1_array.ndim

尺寸:size,既所有元素的个数,也是各维度尺寸的乘积

复制代码
size1 = one_data.size

元素类型:dtype

复制代码
dtype1 = t1_array.dtype
相关推荐
景早15 小时前
NumPy 矩阵库(numpy.matlib)用法与作用详解
线性代数·矩阵·numpy
lljss20201 天前
2. 多维数值
numpy
王大傻09282 天前
numpy -- 算术函数 reciprocal() 和 power() 简介
python·numpy
jie*8 天前
小杰深度学习(five)——正则化、神经网络的过拟合解决方案
人工智能·python·深度学习·神经网络·numpy·matplotlib
西猫雷婶9 天前
random.shuffle()函数随机打乱数据
开发语言·pytorch·python·学习·算法·线性回归·numpy
MoRanzhi12039 天前
0. NumPy 系列教程:科学计算与数据分析实战
人工智能·python·机器学习·数据挖掘·数据分析·numpy·概率论
万粉变现经纪人11 天前
如何解决 pip install 安装报错 ModuleNotFoundError: No module named ‘flax’ 问题
selenium·flask·beautifulsoup·numpy·scikit-learn·pip·scipy
计算机编程小央姐14 天前
企业级大数据技术栈:基于Hadoop+Spark的全球经济指标分析与可视化系统实践
大数据·hadoop·hdfs·spark·echarts·numpy·课程设计
MoRanzhi120314 天前
12. NumPy 数据分析与图像处理入门
大数据·图像处理·人工智能·python·矩阵·数据分析·numpy
MoRanzhi120315 天前
9. NumPy 线性代数:矩阵运算与科学计算基础
人工智能·python·线性代数·算法·机器学习·矩阵·numpy