使用RANSAC来拟合直线

RANSAC是"RANdom SAmple Consensus"的缩写,是一种迭代方法,用于数据中估计统计参数或几何模型的算法。它通过给定数据集中随机选择样本并使用样本计算模型,然后测试模型的可能性来工作。如果一个模型通过了足够数量的测试,则认为该模型是可接受的。

在Java中,我们可以使用RANSAC库来实现RANSAC算法。以下是一个简单的例子,使用RANSAC来拟合直线。

import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;
import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder.Weight;

public class RansacExample {
    public static void main(String[] args) {
        final double[][] points = ...; // Your data points

        // Create a builder
        final LeastSquaresBuilder builder = new LeastSquaresBuilder();

        // Set up a problem with weights
        final Weight weight = Weight.SIMPLE; // or DIAGONAL or WITHOUT_NORMALIZATION
        final LeastSquaresProblem problem = builder
            .weight(weight)
            .target(new double[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) // Your target values
            .model(new LinearModel(), initialGuess) // Your model and initial guess
            .build();

        // Perform the computation
        final LeastSquaresOptimizer optimizer = new LevenbergMarquardtOptimizer();
        final LeastSquaresOptimizer.Optimum optimum = optimizer.optimize(problem);

        // Print the result
        final double[] solution = optimum.getPoint();
        System.out.println(solution[0]); // Slope
        System.out.println(solution[1]); // Intercept
    }

    // A simple linear model y = ax + b
    public static class LinearModel extends Model {
        public LinearModel() {
            super(2); // 2 parameters: slope and intercept
        }

        @Override
        public double[] value(double[] point) {
            final double x = point[0];
            final double[] result = new double[1]; // Number of outputs
            result[0] = point[1] + (point[0] * x);
            return result;
        }
    }
}
相关推荐
新手小袁_J22 分钟前
JDK11下载安装和配置超详细过程
java·spring cloud·jdk·maven·mybatis·jdk11
呆呆小雅23 分钟前
C#关键字volatile
java·redis·c#
Monly2123 分钟前
Java(若依):修改Tomcat的版本
java·开发语言·tomcat
Ttang2325 分钟前
Tomcat原理(6)——tomcat完整实现
java·tomcat
钱多多_qdd36 分钟前
spring cache源码解析(四)——从@EnableCaching开始来阅读源码
java·spring boot·spring
waicsdn_haha38 分钟前
Java/JDK下载、安装及环境配置超详细教程【Windows10、macOS和Linux图文详解】
java·运维·服务器·开发语言·windows·后端·jdk
Q_19284999061 小时前
基于Spring Boot的摄影器材租赁回收系统
java·spring boot·后端
Code_流苏1 小时前
VSCode搭建Java开发环境 2024保姆级安装教程(Java环境搭建+VSCode安装+运行测试+背景图设置)
java·ide·vscode·搭建·java开发环境
禁默2 小时前
深入浅出:AWT的基本组件及其应用
java·开发语言·界面编程
Cachel wood2 小时前
python round四舍五入和decimal库精确四舍五入
java·linux·前端·数据库·vue.js·python·前端框架