RANSAC是"RANdom SAmple Consensus"的缩写,是一种迭代方法,用于数据中估计统计参数或几何模型的算法。它通过给定数据集中随机选择样本并使用样本计算模型,然后测试模型的可能性来工作。如果一个模型通过了足够数量的测试,则认为该模型是可接受的。
在Java中,我们可以使用RANSAC库来实现RANSAC算法。以下是一个简单的例子,使用RANSAC来拟合直线。
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;
import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder.Weight;
public class RansacExample {
public static void main(String[] args) {
final double[][] points = ...; // Your data points
// Create a builder
final LeastSquaresBuilder builder = new LeastSquaresBuilder();
// Set up a problem with weights
final Weight weight = Weight.SIMPLE; // or DIAGONAL or WITHOUT_NORMALIZATION
final LeastSquaresProblem problem = builder
.weight(weight)
.target(new double[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) // Your target values
.model(new LinearModel(), initialGuess) // Your model and initial guess
.build();
// Perform the computation
final LeastSquaresOptimizer optimizer = new LevenbergMarquardtOptimizer();
final LeastSquaresOptimizer.Optimum optimum = optimizer.optimize(problem);
// Print the result
final double[] solution = optimum.getPoint();
System.out.println(solution[0]); // Slope
System.out.println(solution[1]); // Intercept
}
// A simple linear model y = ax + b
public static class LinearModel extends Model {
public LinearModel() {
super(2); // 2 parameters: slope and intercept
}
@Override
public double[] value(double[] point) {
final double x = point[0];
final double[] result = new double[1]; // Number of outputs
result[0] = point[1] + (point[0] * x);
return result;
}
}
}