在机器学习领域中,One-Hot Encoding是什么

一般来说,机器学习模型要求所有的输入输出变量都必须是数字。如果我们的数据中包含了分类数据,我们必须将它们编码成一些数字,这样我们才可以拿去训练和评测一个机器学习模型。

我们常说的分类数据是不能够直接拿来训练、预测的。因为它们一般都不是数值数据(数字),分类数据一般都是一些名称、标签,比如说颜色的分类数据有"红"、"绿"、"黄"、"紫"等等,再比如汽车品牌分类数据有"比亚迪"、"奇瑞"、"长城"、"广汽"等等。它们都缺乏特定的数值。为了能够使用上机器学习算法,我们就要想办法用一些数字去代表它们。这个过程就是数字化编码过程。只要你把够把数字与它们(分类数据)对应上就行。

数字编码技术有很多。其中有一种叫"One-Hot Encoding",关键python还有相似的库来使用,所以让这种编码就更流行了。编出来的码主要的作用就是与相应分类数据一一对应上,方便机器学习算法的操作。而且这种编码用完就可以丢掉了,hot就体现在这了。它只有在对应着分类数据时才是有意义的。

One-Hot Encoding的思想也很简单,one bit hot encoding,一个比特位热编码。比特位的值只有两个0或1,所以一个比特位代表一个分类。如

奇瑞 广汽 比亚迪 长城
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

奇瑞: 1000

广汽:0100

比亚迪:0010

长城:0001

sklearn提供了One-Hot encoding的数据预处理工具,我们这里因为是在应用机器学习算法前做的数据处理,所以这个阶段也叫数据预处理。

python 复制代码
import numpy as np
from sklearn.preprocessing import OneHotEncoder

categerical_data = np.array([['比亚迪'],['奇瑞'],['长城'],['广汽']])
one_hot_encoder = OneHotEncoder(sparse_output=False)
rs = one_hot_encoder.fit_transform(categerical_data)

结果:

相关推荐
sali-tec7 小时前
C# 基于halcon的视觉工作流-章42-手动识别文本
开发语言·人工智能·算法·计算机视觉·c#·ocr
mit6.8247 小时前
[VoiceRAG] 前端实时通信 | useRealTime钩子
人工智能
B站_计算机毕业设计之家8 小时前
机器学习实战项目:Python+Flask 汽车销量分析可视化系统(requests爬车主之家+可视化 源码+文档)✅
人工智能·python·机器学习·数据分析·flask·汽车·可视化
CV-杨帆8 小时前
论文阅读:arxiv 2025 Scaling Laws for Differentially Private Language Models
论文阅读·人工智能·语言模型
羊羊小栈8 小时前
基于「多模态大模型 + BGE向量检索增强RAG」的航空维修智能问答系统(vue+flask+AI算法)
vue.js·人工智能·python·语言模型·flask·毕业设计
viperrrrrrrrrr78 小时前
GPT系列模型-详解
人工智能·gpt·llm
算家计算8 小时前
Wan2.2-Animate-14B 使用指南:从图片到动画的完整教程
人工智能·开源·aigc
西柚小萌新8 小时前
【深入浅出PyTorch】--4.PyTorch基础实战
人工智能·pytorch·python
渡我白衣9 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(下)
人工智能·深度学习·神经网络
算家计算9 小时前
快手新模型登顶开源编程模型榜首!超越Qwen3-Coder等模型
人工智能·开源·资讯