在机器学习领域中,One-Hot Encoding是什么

一般来说,机器学习模型要求所有的输入输出变量都必须是数字。如果我们的数据中包含了分类数据,我们必须将它们编码成一些数字,这样我们才可以拿去训练和评测一个机器学习模型。

我们常说的分类数据是不能够直接拿来训练、预测的。因为它们一般都不是数值数据(数字),分类数据一般都是一些名称、标签,比如说颜色的分类数据有"红"、"绿"、"黄"、"紫"等等,再比如汽车品牌分类数据有"比亚迪"、"奇瑞"、"长城"、"广汽"等等。它们都缺乏特定的数值。为了能够使用上机器学习算法,我们就要想办法用一些数字去代表它们。这个过程就是数字化编码过程。只要你把够把数字与它们(分类数据)对应上就行。

数字编码技术有很多。其中有一种叫"One-Hot Encoding",关键python还有相似的库来使用,所以让这种编码就更流行了。编出来的码主要的作用就是与相应分类数据一一对应上,方便机器学习算法的操作。而且这种编码用完就可以丢掉了,hot就体现在这了。它只有在对应着分类数据时才是有意义的。

One-Hot Encoding的思想也很简单,one bit hot encoding,一个比特位热编码。比特位的值只有两个0或1,所以一个比特位代表一个分类。如

奇瑞 广汽 比亚迪 长城
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

奇瑞: 1000

广汽:0100

比亚迪:0010

长城:0001

sklearn提供了One-Hot encoding的数据预处理工具,我们这里因为是在应用机器学习算法前做的数据处理,所以这个阶段也叫数据预处理。

python 复制代码
import numpy as np
from sklearn.preprocessing import OneHotEncoder

categerical_data = np.array([['比亚迪'],['奇瑞'],['长城'],['广汽']])
one_hot_encoder = OneHotEncoder(sparse_output=False)
rs = one_hot_encoder.fit_transform(categerical_data)

结果:

相关推荐
EMQX3 分钟前
驶向智能未来:车载 MCP 服务与边缘计算驱动的驾驶数据交互新体验
人工智能·后端
hie988944 分钟前
基于TI DSP控制的光伏逆变器最大功率跟踪mppt
人工智能
AI悦创Python辅导6 分钟前
我是如何爱上 __init__.py 的:一个简单易懂的指南
人工智能·后端·python
AI technophile7 分钟前
OpenCV计算机视觉实战(10)——形态学操作详解
人工智能·opencv·计算机视觉
weixin_4786897612 分钟前
【conda配置深度学习环境】
人工智能·深度学习·conda
我想睡觉26113 分钟前
Python训练营打卡DAY44
开发语言·人工智能·python·深度学习·算法·机器学习
硬核隔壁老王16 分钟前
从零开始搭建RAG系统系列(三):数据准备与预处理
人工智能·程序员·llm
玄明Hanko20 分钟前
AI 界的圣经!互联网女皇发布340页年度重磅AI趋势报告
人工智能·aigc
硬核隔壁老王21 分钟前
从零开始搭建RAG系统系列(四):⽂档向量化与索引构建
人工智能·程序员·llm
XMAIPC_Robot28 分钟前
基于RK3576+FPGA+AI工业控制器的工地防护检测装备解决方案
人工智能·fpga开发