在机器学习领域中,One-Hot Encoding是什么

一般来说,机器学习模型要求所有的输入输出变量都必须是数字。如果我们的数据中包含了分类数据,我们必须将它们编码成一些数字,这样我们才可以拿去训练和评测一个机器学习模型。

我们常说的分类数据是不能够直接拿来训练、预测的。因为它们一般都不是数值数据(数字),分类数据一般都是一些名称、标签,比如说颜色的分类数据有"红"、"绿"、"黄"、"紫"等等,再比如汽车品牌分类数据有"比亚迪"、"奇瑞"、"长城"、"广汽"等等。它们都缺乏特定的数值。为了能够使用上机器学习算法,我们就要想办法用一些数字去代表它们。这个过程就是数字化编码过程。只要你把够把数字与它们(分类数据)对应上就行。

数字编码技术有很多。其中有一种叫"One-Hot Encoding",关键python还有相似的库来使用,所以让这种编码就更流行了。编出来的码主要的作用就是与相应分类数据一一对应上,方便机器学习算法的操作。而且这种编码用完就可以丢掉了,hot就体现在这了。它只有在对应着分类数据时才是有意义的。

One-Hot Encoding的思想也很简单,one bit hot encoding,一个比特位热编码。比特位的值只有两个0或1,所以一个比特位代表一个分类。如

奇瑞 广汽 比亚迪 长城
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

奇瑞: 1000

广汽:0100

比亚迪:0010

长城:0001

sklearn提供了One-Hot encoding的数据预处理工具,我们这里因为是在应用机器学习算法前做的数据处理,所以这个阶段也叫数据预处理。

python 复制代码
import numpy as np
from sklearn.preprocessing import OneHotEncoder

categerical_data = np.array([['比亚迪'],['奇瑞'],['长城'],['广汽']])
one_hot_encoder = OneHotEncoder(sparse_output=False)
rs = one_hot_encoder.fit_transform(categerical_data)

结果:

相关推荐
飞哥数智坊11 分钟前
V4/R4 没来,但 DeepSeek-V3.2 好像又便宜又好用?
人工智能·deepseek
CareyWYR17 分钟前
AI:比我更懂我的旁观者
人工智能
搞科研的小刘选手1 小时前
【高录用|快检索】第二届图像处理、多媒体技术与机器学习国际学术会议(IPMML 2025)
人工智能·机器学习·多媒体·学术会议
秋邱1 小时前
AI + 社区服务:智慧老年康养助手(轻量化落地方案)
人工智能·python·重构·ar·推荐算法·agi
leijiwen1 小时前
Bsin X BDCM:从流量驱动到价值激励驱动的智能增长引擎
大数据·人工智能·web3
人工智能训练1 小时前
Linux 系统核心快捷键表(可打印版)
linux·运维·服务器·人工智能·ubuntu·容器·openeuler
得贤招聘官1 小时前
AI 重构招聘:从效率到精准决策
人工智能·重构
高锰酸钾_1 小时前
机器学习基础 | KNN(K-近邻)
人工智能·机器学习
人邮异步社区1 小时前
想要系统地学习扩散模型,应该怎么去做?
人工智能·学习·程序员·扩散模型
1***y1781 小时前
区块链跨链桥、 跨链桥到底在解决什么问题?
大数据·人工智能·区块链