在机器学习领域中,One-Hot Encoding是什么

一般来说,机器学习模型要求所有的输入输出变量都必须是数字。如果我们的数据中包含了分类数据,我们必须将它们编码成一些数字,这样我们才可以拿去训练和评测一个机器学习模型。

我们常说的分类数据是不能够直接拿来训练、预测的。因为它们一般都不是数值数据(数字),分类数据一般都是一些名称、标签,比如说颜色的分类数据有"红"、"绿"、"黄"、"紫"等等,再比如汽车品牌分类数据有"比亚迪"、"奇瑞"、"长城"、"广汽"等等。它们都缺乏特定的数值。为了能够使用上机器学习算法,我们就要想办法用一些数字去代表它们。这个过程就是数字化编码过程。只要你把够把数字与它们(分类数据)对应上就行。

数字编码技术有很多。其中有一种叫"One-Hot Encoding",关键python还有相似的库来使用,所以让这种编码就更流行了。编出来的码主要的作用就是与相应分类数据一一对应上,方便机器学习算法的操作。而且这种编码用完就可以丢掉了,hot就体现在这了。它只有在对应着分类数据时才是有意义的。

One-Hot Encoding的思想也很简单,one bit hot encoding,一个比特位热编码。比特位的值只有两个0或1,所以一个比特位代表一个分类。如

奇瑞 广汽 比亚迪 长城
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

奇瑞: 1000

广汽:0100

比亚迪:0010

长城:0001

sklearn提供了One-Hot encoding的数据预处理工具,我们这里因为是在应用机器学习算法前做的数据处理,所以这个阶段也叫数据预处理。

python 复制代码
import numpy as np
from sklearn.preprocessing import OneHotEncoder

categerical_data = np.array([['比亚迪'],['奇瑞'],['长城'],['广汽']])
one_hot_encoder = OneHotEncoder(sparse_output=False)
rs = one_hot_encoder.fit_transform(categerical_data)

结果:

相关推荐
水如烟30 分钟前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学34 分钟前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19821 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮1 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手1 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋1 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-1 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView1 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7772 小时前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云2 小时前
Claude Code:进入dash模式
人工智能