【Windows11 安装 Detectron2】

Windows11 安装 Detectron2

  • [1. 创建虚拟环境](#1. 创建虚拟环境)
  • 2.配置Pytorch环境
  • [3. 安装cocoapi](#3. 安装cocoapi)
  • [4. 下载detectron2](#4. 下载detectron2)
    • [4.1 修改setup.py](#4.1 修改setup.py)
    • [4.2 修改 nms_rotated_cuda.cu(detectron2\detectron2\layers\csrc\nms_rotated\nms_rotated_cuda.cu)](#4.2 修改 nms_rotated_cuda.cu(detectron2\detectron2\layers\csrc\nms_rotated\nms_rotated_cuda.cu))
  • [5. 开始下载依赖库以及编译环境](#5. 开始下载依赖库以及编译环境)
  • 6.测试
  • [7. demo代码](#7. demo代码)
  • [8. 参考文章](#8. 参考文章)

1. 创建虚拟环境

bash 复制代码
conda create -n detectron1 python=3.8
# 激活环境
conda activate detectron1

2.配置Pytorch环境

bash 复制代码
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

3. 安装cocoapi

bash 复制代码
pip install pycocotools -i https://pypi.tuna.tsinghua.edu.cn/simple

4. 下载detectron2

bash 复制代码
git clone https://gitcode.com/facebookresearch/detectron2.git

4.1 修改setup.py

bash 复制代码
将"pycocotools>=2.0.2", 修改为"pycocotools"

4.2 修改 nms_rotated_cuda.cu(detectron2\detectron2\layers\csrc\nms_rotated\nms_rotated_cuda.cu)

将using namespace detectron2之前的用下面代码覆盖

cpp 复制代码
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
/*#ifdef WITH_CUDA
#include "../box_iou_rotated/box_iou_rotated_utils.h"
#endif
// TODO avoid this when pytorch supports "same directory" hipification
#ifdef WITH_HIP
#include "box_iou_rotated/box_iou_rotated_utils.h"
#endif*/
#include "box_iou_rotated/box_iou_rotated_utils.h"

5. 开始下载依赖库以及编译环境

命令要在这个目录下执行,不要进入到detectron代码中去:

执行如下命令:

cpp 复制代码
python -m pip install -e detectron2 -i https://pypi.tuna.tsinghua.edu.cn/simple

等待编译完成即可。

6.测试

cpp 复制代码
Study\ImageSegmentation\detectron2\demo>python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml --input 000043.jpg input2.jpg  --opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl

7. demo代码

python 复制代码
import wget
import cv2

import torch
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()

# import some common libraries
import numpy as np
import os, json, cv2, random

# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog


TORCH_VERSION = ".".join(torch.__version__.split(".")[:2])
CUDA_VERSION = torch.__version__.split("+")[-1]
print("torch: ", TORCH_VERSION, "; cuda: ", CUDA_VERSION)
print("detectron2:", detectron2.__version__)

def progress_bar(current, total, width=80):
    progress = current / total
    bar = '#' * int(progress * width)
    percentage = round(progress * 100, 2)
    print(f'[{bar:<{width}}] {percentage}%')
    

if True:
    url = 'http://images.cocodataset.org/val2017/000000439715.jpg'
    save_path = 'input.jpg'

    try:
        wget.download(url, save_path, bar=progress_bar)
    except Exception as e:
        print(f'An error occurred: {e}')

im = cv2.imread("./input.jpg")
cv2.imshow('img', im)
cv2.waitKey(0)

cfg = get_cfg()
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5  # set threshold for this model
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
predictor = DefaultPredictor(cfg)
outputs = predictor(im)

# look at the outputs. See https://detectron2.readthedocs.io/tutorials/models.html#model-output-format for specification
print(outputs["instances"].pred_classes)
print(outputs["instances"].pred_boxes)

# We can use `Visualizer` to draw the predictions on the image.
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2.imshow('results', out.get_image()[:, :, ::-1])
cv2.waitKey(0)

8. 参考文章

https://blog.csdn.net/weixin_45839733/article/details/129356470

相关推荐
九河云17 小时前
华为云 ECS 弹性伸缩技术:应对业务峰值的算力动态调度策略
大数据·服务器·人工智能·物联网·华为云
一点晖光18 小时前
Docker 作图咒语生成器搭建指南
python·docker
IT空门:门主18 小时前
Spring AI的教程,持续更新......
java·人工智能·spring·spring ai
smj2302_7968265218 小时前
解决leetcode第3768题.固定长度子数组中的最小逆序对数目
python·算法·leetcode
美狐美颜SDK开放平台18 小时前
美颜sdk是什么?如何将美颜SDK接入安卓/iOS直播平台?
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
AI营销资讯站18 小时前
AI营销内容生产:哪些平台支持全球多语言内容同步生产?
大数据·人工智能
木头左18 小时前
位置编码增强法在量化交易策略中的应用基于短期记忆敏感度提升
python
Acc1oFl4g18 小时前
详解Java反射
java·开发语言·python
飞哥数智坊18 小时前
AutoGLM 开源实测:一句话让 AI 帮我点个鸡排
人工智能·chatglm (智谱)
2022.11.7始学前端19 小时前
n8n第九节 使用LangChain与Gemini构建带对话记忆的AI助手
java·人工智能·n8n