【Windows11 安装 Detectron2】

Windows11 安装 Detectron2

  • [1. 创建虚拟环境](#1. 创建虚拟环境)
  • 2.配置Pytorch环境
  • [3. 安装cocoapi](#3. 安装cocoapi)
  • [4. 下载detectron2](#4. 下载detectron2)
    • [4.1 修改setup.py](#4.1 修改setup.py)
    • [4.2 修改 nms_rotated_cuda.cu(detectron2\detectron2\layers\csrc\nms_rotated\nms_rotated_cuda.cu)](#4.2 修改 nms_rotated_cuda.cu(detectron2\detectron2\layers\csrc\nms_rotated\nms_rotated_cuda.cu))
  • [5. 开始下载依赖库以及编译环境](#5. 开始下载依赖库以及编译环境)
  • 6.测试
  • [7. demo代码](#7. demo代码)
  • [8. 参考文章](#8. 参考文章)

1. 创建虚拟环境

bash 复制代码
conda create -n detectron1 python=3.8
# 激活环境
conda activate detectron1

2.配置Pytorch环境

bash 复制代码
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

3. 安装cocoapi

bash 复制代码
pip install pycocotools -i https://pypi.tuna.tsinghua.edu.cn/simple

4. 下载detectron2

bash 复制代码
git clone https://gitcode.com/facebookresearch/detectron2.git

4.1 修改setup.py

bash 复制代码
将"pycocotools>=2.0.2", 修改为"pycocotools"

4.2 修改 nms_rotated_cuda.cu(detectron2\detectron2\layers\csrc\nms_rotated\nms_rotated_cuda.cu)

将using namespace detectron2之前的用下面代码覆盖

cpp 复制代码
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
/*#ifdef WITH_CUDA
#include "../box_iou_rotated/box_iou_rotated_utils.h"
#endif
// TODO avoid this when pytorch supports "same directory" hipification
#ifdef WITH_HIP
#include "box_iou_rotated/box_iou_rotated_utils.h"
#endif*/
#include "box_iou_rotated/box_iou_rotated_utils.h"

5. 开始下载依赖库以及编译环境

命令要在这个目录下执行,不要进入到detectron代码中去:

执行如下命令:

cpp 复制代码
python -m pip install -e detectron2 -i https://pypi.tuna.tsinghua.edu.cn/simple

等待编译完成即可。

6.测试

cpp 复制代码
Study\ImageSegmentation\detectron2\demo>python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml --input 000043.jpg input2.jpg  --opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl

7. demo代码

python 复制代码
import wget
import cv2

import torch
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()

# import some common libraries
import numpy as np
import os, json, cv2, random

# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog


TORCH_VERSION = ".".join(torch.__version__.split(".")[:2])
CUDA_VERSION = torch.__version__.split("+")[-1]
print("torch: ", TORCH_VERSION, "; cuda: ", CUDA_VERSION)
print("detectron2:", detectron2.__version__)

def progress_bar(current, total, width=80):
    progress = current / total
    bar = '#' * int(progress * width)
    percentage = round(progress * 100, 2)
    print(f'[{bar:<{width}}] {percentage}%')
    

if True:
    url = 'http://images.cocodataset.org/val2017/000000439715.jpg'
    save_path = 'input.jpg'

    try:
        wget.download(url, save_path, bar=progress_bar)
    except Exception as e:
        print(f'An error occurred: {e}')

im = cv2.imread("./input.jpg")
cv2.imshow('img', im)
cv2.waitKey(0)

cfg = get_cfg()
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5  # set threshold for this model
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
predictor = DefaultPredictor(cfg)
outputs = predictor(im)

# look at the outputs. See https://detectron2.readthedocs.io/tutorials/models.html#model-output-format for specification
print(outputs["instances"].pred_classes)
print(outputs["instances"].pred_boxes)

# We can use `Visualizer` to draw the predictions on the image.
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2.imshow('results', out.get_image()[:, :, ::-1])
cv2.waitKey(0)

8. 参考文章

https://blog.csdn.net/weixin_45839733/article/details/129356470

相关推荐
weisian1511 分钟前
入门篇--知名企业-8-Amazon:从在线书商到万物帝国——一部重塑现代商业与生活的传奇
人工智能·生活
不荒Huang6 分钟前
task3—大语言模型基础
人工智能·语言模型·自然语言处理
A10086121217 分钟前
图论基础与谱聚类算法
人工智能·机器学习·聚类
IT·陈寒7 分钟前
2025年AI开发工具生态总结:从爆款模型到智能IDE的蜕变
ide·人工智能
秋邱8 分钟前
Java匿名内部类的使用场景:从语法本质到实战优化全解析
android·java·开发语言·数据库·python
kimi-2228 分钟前
Transformer 模型中位置编码(Positional Encoding, PE)
pytorch·python·transformer
m0_6896182812 分钟前
纳米工程重构生物材料:从实验室到临床的革命性突破
人工智能·笔记·学习·计算机视觉
reasonsummer14 分钟前
【教学类-89-02】20251229新年篇11—— 马年红包(Python图片)
python·通义万相
Mqh18076214 分钟前
day53 预训练模型CBAM注意力
python
程序员佳佳15 分钟前
【硬核实测】GPT-5.2-Pro 对决 Gemini-3-Pro (Banana Pro):开发者如何低成本接入下一代 AI 模型?附 Python 源码
人工智能·python·gpt·chatgpt·ai作画·midjourney·ai编程