【Windows11 安装 Detectron2】

Windows11 安装 Detectron2

  • [1. 创建虚拟环境](#1. 创建虚拟环境)
  • 2.配置Pytorch环境
  • [3. 安装cocoapi](#3. 安装cocoapi)
  • [4. 下载detectron2](#4. 下载detectron2)
    • [4.1 修改setup.py](#4.1 修改setup.py)
    • [4.2 修改 nms_rotated_cuda.cu(detectron2\detectron2\layers\csrc\nms_rotated\nms_rotated_cuda.cu)](#4.2 修改 nms_rotated_cuda.cu(detectron2\detectron2\layers\csrc\nms_rotated\nms_rotated_cuda.cu))
  • [5. 开始下载依赖库以及编译环境](#5. 开始下载依赖库以及编译环境)
  • 6.测试
  • [7. demo代码](#7. demo代码)
  • [8. 参考文章](#8. 参考文章)

1. 创建虚拟环境

bash 复制代码
conda create -n detectron1 python=3.8
# 激活环境
conda activate detectron1

2.配置Pytorch环境

bash 复制代码
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

3. 安装cocoapi

bash 复制代码
pip install pycocotools -i https://pypi.tuna.tsinghua.edu.cn/simple

4. 下载detectron2

bash 复制代码
git clone https://gitcode.com/facebookresearch/detectron2.git

4.1 修改setup.py

bash 复制代码
将"pycocotools>=2.0.2", 修改为"pycocotools"

4.2 修改 nms_rotated_cuda.cu(detectron2\detectron2\layers\csrc\nms_rotated\nms_rotated_cuda.cu)

将using namespace detectron2之前的用下面代码覆盖

cpp 复制代码
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
/*#ifdef WITH_CUDA
#include "../box_iou_rotated/box_iou_rotated_utils.h"
#endif
// TODO avoid this when pytorch supports "same directory" hipification
#ifdef WITH_HIP
#include "box_iou_rotated/box_iou_rotated_utils.h"
#endif*/
#include "box_iou_rotated/box_iou_rotated_utils.h"

5. 开始下载依赖库以及编译环境

命令要在这个目录下执行,不要进入到detectron代码中去:

执行如下命令:

cpp 复制代码
python -m pip install -e detectron2 -i https://pypi.tuna.tsinghua.edu.cn/simple

等待编译完成即可。

6.测试

cpp 复制代码
Study\ImageSegmentation\detectron2\demo>python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml --input 000043.jpg input2.jpg  --opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl

7. demo代码

python 复制代码
import wget
import cv2

import torch
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()

# import some common libraries
import numpy as np
import os, json, cv2, random

# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog


TORCH_VERSION = ".".join(torch.__version__.split(".")[:2])
CUDA_VERSION = torch.__version__.split("+")[-1]
print("torch: ", TORCH_VERSION, "; cuda: ", CUDA_VERSION)
print("detectron2:", detectron2.__version__)

def progress_bar(current, total, width=80):
    progress = current / total
    bar = '#' * int(progress * width)
    percentage = round(progress * 100, 2)
    print(f'[{bar:<{width}}] {percentage}%')
    

if True:
    url = 'http://images.cocodataset.org/val2017/000000439715.jpg'
    save_path = 'input.jpg'

    try:
        wget.download(url, save_path, bar=progress_bar)
    except Exception as e:
        print(f'An error occurred: {e}')

im = cv2.imread("./input.jpg")
cv2.imshow('img', im)
cv2.waitKey(0)

cfg = get_cfg()
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5  # set threshold for this model
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
predictor = DefaultPredictor(cfg)
outputs = predictor(im)

# look at the outputs. See https://detectron2.readthedocs.io/tutorials/models.html#model-output-format for specification
print(outputs["instances"].pred_classes)
print(outputs["instances"].pred_boxes)

# We can use `Visualizer` to draw the predictions on the image.
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2.imshow('results', out.get_image()[:, :, ::-1])
cv2.waitKey(0)

8. 参考文章

https://blog.csdn.net/weixin_45839733/article/details/129356470

相关推荐
发哥来了5 分钟前
主流AI视频生成工具商用化能力评测:五大关键维度对比分析
大数据·人工智能·音视频
跳跳糖炒酸奶6 分钟前
基于深度学习的单目深度估计综述阅读(1)
人工智能·深度学习·数码相机·单目深度估计
曲幽11 分钟前
Django入门指南:Python Web开发的“瑞士军刀”
python·django·flask·fastapi·web·pythonweb
yangpipi-12 分钟前
第一章 语言模型基础
人工智能·语言模型·自然语言处理
m0_7482495414 分钟前
Java 语言提供了八种基本类型【文123】
java·开发语言·python
移幻漂流19 分钟前
Kotlin 如何解决 Java 的核心痛点:现代语言特性的深度剖析
java·python·kotlin
我的xiaodoujiao22 分钟前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 41--自定义定制化展示 Allure 测试报告内容
python·学习·测试工具·pytest
Piar1231sdafa22 分钟前
基于yolo13-C3k2-RVB的洗手步骤识别与检测系统实现_1
人工智能·算法·目标跟踪
2501_9421917723 分钟前
YOLO11-Seg-SwinTransformer榛子缺陷识别实战
python
小北方城市网30 分钟前
SpringBoot 集成 MyBatis-Plus 实战(高效 CRUD 与复杂查询):简化数据库操作
java·数据库·人工智能·spring boot·后端·安全·mybatis