cuda编程案例教程

CUDA(Compute Unified Device Architecture)是一种由NVIDIA开发的并行计算平台和编程模型,它允许开发者使用NVIDIA的GPU(图形处理单元)进行通用计算。以下是一些基本的CUDA编程概念和步骤,以及一个简单的编程案例。

基本概念:

  1. **核函数(Kernel)**:用 `global` 修饰的函数,运行在GPU上。

  2. **主机代码和设备代码**:主机代码运行在CPU上,设备代码运行在GPU上。

  3. **内存管理**:需要使用 `cudaMalloc` 和 `cudaFree` 管理GPU内存。

  4. **数据传输**:使用 `cudaMemcpy` 在主机和设备之间传输数据。

  5. **线程和线程块**:线程块是一组线程的集合,线程块组织成网格。

基本步骤:

  1. **包含CUDA头文件**:

```cpp

#include <cuda_runtime.h>

```

  1. **定义核函数**:

```cpp

global void add(int *c, int *a, int *b) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

```

  1. **分配GPU内存**:

```cpp

int *dev_a, *dev_b, *dev_c;

size_t size = N * sizeof(int);

cudaMalloc(&dev_a, size);

cudaMalloc(&dev_b, size);

cudaMalloc(&dev_c, size);

```

  1. **初始化数据**:

```cpp

int *h_a = new int[N];

int *h_b = new int[N];

// Initialize h_a and h_b

```

  1. **从主机复制数据到设备**:

```cpp

cudaMemcpy(dev_a, h_a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, h_b, size, cudaMemcpyHostToDevice);

```

  1. **调用核函数**:

```cpp

add<<<gridSize, blockSize>>>(dev_c, dev_a, dev_b);

```

  1. **从设备复制结果回主机**:

```cpp

cudaMemcpy(h_c, dev_c, size, cudaMemcpyDeviceToHost);

```

  1. **释放GPU内存**:

```cpp

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

```

编程案例:

假设我们要编写一个CUDA程序来计算两个向量的和。

**主函数**:

```cpp

int main() {

int N = 256; // 向量大小

size_t size = N * sizeof(int);

int *h_a = new int[N], *h_b = new int[N], *h_c = new int[N];

// 初始化h_a和h_b

int *dev_a, *dev_b, *dev_c;

cudaMalloc(&dev_a, size);

cudaMalloc(&dev_b, size);

cudaMalloc(&dev_c, size);

cudaMemcpy(dev_a, h_a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, h_b, size, cudaMemcpyHostToDevice);

// 计算网格和线程块大小

int blockSize = 256;

int gridSize = (int)ceil((float)N / blockSize);

// 调用核函数

add<<<gridSize, blockSize>>>(dev_c, dev_a, dev_b);

// 将结果从设备内存复制回主机内存

cudaMemcpy(h_c, dev_c, size, cudaMemcpyDeviceToHost);

// 检查结果

for (int i = 0; i < N; i++) {

assert(h_c[i] == h_a[i] + h_b[i]);

}

// 清理

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

delete[] h_a;

delete[] h_b;

delete[] h_c;

return 0;

}

```

请注意,这个案例是一个简化的示例,用于展示CUDA编程的基本结构。在实际应用中,你可能需要考虑更复杂的错误处理和性能优化。

相关推荐
meisongqing5 分钟前
【软件工程】符号执行与约束求解缺陷检测方法
人工智能·算法·软件工程·软件缺陷
OJAC近屿智能21 分钟前
ChatGPT再升级!
大数据·人工智能·百度·chatgpt·近屿智能
莫叫石榴姐26 分钟前
如何为大模型编写优雅且高效的提示词?
人工智能·算法
愚公搬代码36 分钟前
【愚公系列】《Manus极简入门》042-投资策略分析师:“投资智慧导航”
人工智能·agi·ai agent·智能体·manus
papapa键盘侠37 分钟前
Coze 实战教程 | 10 分钟打造你的AI 助手
人工智能·微信·信息可视化
I"ll carry you1 小时前
【2025.5.12】视觉语言模型 (更好、更快、更强)
人工智能·语言模型·自然语言处理
双翌视觉1 小时前
机器视觉光源选型解析:照亮工业检测的“智慧之眼”
人工智能·机器视觉·视觉对位·视觉软件
Echo``1 小时前
1:OpenCV—图像基础
c++·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
FL171713142 小时前
MATLAB机器人系统工具箱中的loadrobot和importrobot
人工智能·matlab·机器人
夏天是冰红茶2 小时前
图像处理:预览并绘制图像细节
图像处理·人工智能·opencv