[信号与系统]FIR滤波器的几种常见窗口法计算方法

FIR滤波器的几种常见窗口法计算方法

1. 矩形窗口(Rectangular Window)

矩形窗口直接截断理想脉冲响应,无额外的平滑效果。它简单但会引入较大的旁瓣效应。

w [ n ] = 1 , 0 ≤ n ≤ N − 1 w[n] = 1, \quad 0 \le n \le N-1 w[n]=1,0≤n≤N−1

2. 汉宁窗口(Hanning Window)

汉宁窗口使用平滑的余弦函数,有效减少旁瓣效应。

w [ n ] = 0.5 ( 1 − cos ⁡ ( 2 π n N − 1 ) ) , 0 ≤ n ≤ N − 1 w[n] = 0.5 \left(1 - \cos\left(\frac{2\pi n}{N-1}\right)\right), \quad 0 \le n \le N-1 w[n]=0.5(1−cos(N−12πn)),0≤n≤N−1

3. 汉明窗口(Hamming Window)

汉明窗口是汉宁窗口的变种,进一步减少旁瓣效应,适用于大多数实际应用。

w [ n ] = 0.54 − 0.46 cos ⁡ ( 2 π n N − 1 ) , 0 ≤ n ≤ N − 1 w[n] = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), \quad 0 \le n \le N-1 w[n]=0.54−0.46cos(N−12πn),0≤n≤N−1

4. 布莱克曼窗口(Blackman Window)

布莱克曼窗口具有更好的旁瓣抑制效果,适用于需要高频率分辨率的情况。

w [ n ] = 0.42 − 0.5 cos ⁡ ( 2 π n N − 1 ) + 0.08 cos ⁡ ( 4 π n N − 1 ) , 0 ≤ n ≤ N − 1 w[n] = 0.42 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right) + 0.08 \cos\left(\frac{4\pi n}{N-1}\right), \quad 0 \le n \le N-1 w[n]=0.42−0.5cos(N−12πn)+0.08cos(N−14πn),0≤n≤N−1

5. 凯撒窗口(Kaiser Window)

凯撒窗口具有可调参数 β \beta β,通过调整 β \beta β 可以在主瓣宽度和旁瓣抑制之间进行权衡。

w [ n ] = I 0 ( π β 1 − ( 2 n N − 1 − 1 ) 2 ) I 0 ( π β ) , 0 ≤ n ≤ N − 1 w[n] = \frac{I_0\left(\pi \beta \sqrt{1 - \left(\frac{2n}{N-1} - 1\right)^2}\right)}{I_0(\pi \beta)}, \quad 0 \le n \le N-1 w[n]=I0(πβ)I0(πβ1−(N−12n−1)2 ),0≤n≤N−1

其中 I 0 I_0 I0 是零阶修正贝塞尔函数, β \beta β 为窗口的形状参数。

应用窗口函数设计FIR滤波器的步骤

  1. 定义理想脉冲响应

假设我们设计一个理想的低通滤波器,其理想的脉冲响应为:

h d [ n ] = sin ⁡ ( 2 π f c ( n − N − 1 2 ) ) π ( n − N − 1 2 ) , n ≠ N − 1 2 h_d[n] = \frac{\sin\left(2\pi f_c \left(n - \frac{N-1}{2}\right)\right)}{\pi \left(n - \frac{N-1}{2}\right)}, \quad n \neq \frac{N-1}{2} hd[n]=π(n−2N−1)sin(2πfc(n−2N−1)),n=2N−1

当 n = N − 1 2 n = \frac{N-1}{2} n=2N−1 时,

h d [ N − 1 2 ] = 2 f c h_d\left[\frac{N-1}{2}\right] = 2 f_c hd[2N−1]=2fc

  1. 选择窗口函数

选择适当的窗口函数 w [ n ] w[n] w[n]。

  1. 应用窗口函数

将窗口函数应用到理想的脉冲响应上:

h [ n ] = h d [ n ] ⋅ w [ n ] , 0 ≤ n ≤ N − 1 h[n] = h_d[n] \cdot w[n], \quad 0 \le n \le N-1 h[n]=hd[n]⋅w[n],0≤n≤N−1

示例

假设我们使用汉明窗口设计一个低通FIR滤波器:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 定义滤波器参数
N = 51  # 滤波器长度
fc = 0.25  # 归一化截止频率(f_c = f_c_actual / f_s)

# 理想脉冲响应
n = np.arange(N)
hd = np.sinc(2 * fc * (n - (N - 1) / 2))

# 汉明窗口
w = 0.54 - 0.46 * np.cos(2 * np.pi * n / (N - 1))

# 应用窗口函数
h = hd * w

# 频率响应
H = np.fft.fft(h, 1024)
H = np.fft.fftshift(H)  # 移动零频到中心
H_dB = 20 * np.log10(np.abs(H))

# 绘制时域和频域响应
plt.figure(figsize=(12, 6))

plt.subplot(2, 1, 1)
plt.stem(n, h, use_line_collection=True)
plt.title('时域脉冲响应')
plt.xlabel('样本点')
plt.ylabel('幅度')

plt.subplot(2, 1, 2)
f = np.linspace(-0.5, 0.5, len(H))
plt.plot(f, H_dB)
plt.title('频域响应')
plt.xlabel('归一化频率')
plt.ylabel('幅度 (dB)')
plt.grid()
plt.show()
相关推荐
刘小小_算法工程师10 天前
「ECG信号处理——(18)基于时空特征的心率变异性分析」2025年6月23日
信号处理
zhangfeng113311 天前
MocapApi 中文文档 和github下载地址 NeuronDataReader(以下简称 NDR)的下一代编程接口
github·信号处理
风靡晚11 天前
汽车毫米波雷达增强感知:基于相干扩展和高级 IAA 的超分辨率距离和角度估计.
算法·汽车·信息与通信·信号处理·fmcw
芳菲菲其弥章13 天前
【信号与系统二】连续时间傅里叶变换
信号处理·傅里叶分析
FPGA_ADDA13 天前
宽带中频10.4G采集卡
fpga开发·信号处理·高速数据采集·10g采集卡
棱镜研途14 天前
学习笔记丨数字信号处理(DSP)的应用——图像处理篇
图像处理·人工智能·信号处理
军训猫猫头14 天前
100.Complex[]同时储存实数和虚数两组double的数组 C#例子
算法·c#·信号处理
科研小刘带你玩学术14 天前
【跨界新视野】信号处理遇上VR/AR:下一代沉浸体验的核心技术与您的发表蓝海
人机交互·信号处理·虚拟现实·ei会议·多模态融合·论文发表·学术发表
gihigo199816 天前
RA信号处理
信号处理
FF-Studio16 天前
【DSP笔记 · 第7章】信号处理的“整形”大师:FIR滤波器与线性相位的奥秘
笔记·自动化·音视频·音频·信号处理