机器人坐标系转换

SE2 Representation of 2D rigid-body motion

This subclasss of RTBPose is an object that represents rigid-body motion in 2D.

Internally this is a 3x3 homogeneous transformation matrix (3x3) belonging to

the group SE(2).

Constructor methods::

SE2 general constructor

SE2.exp exponentiate an se(2) matrix

SE2.rand random transformation

new new SE2 object

Display and print methods::

animate ^graphically animate coordinate frame for pose

display ^print the pose in human readable matrix form

plot ^graphically display coordinate frame for pose

print ^print the pose in single line format

Group operations::

* ^mtimes: multiplication (group operator, transform point)

/ ^mrdivide: multiply by inverse

^ ^mpower: exponentiate (integer only):

inv inverse

prod ^product of elements

Methods::

det determinant of matrix component

eig eigenvalues of matrix component

log logarithm of rotation matrix

inv inverse

simplify* apply symbolic simplication to all elements

interp interpolate between poses

theta rotation angle

Information and test methods::

dim ^returns 2

isSE ^returns true

issym ^test if rotation matrix has symbolic elements

SE2.isa test if matrix is SE(2)

Conversion methods::

char* convert to human readable matrix as a string

SE2.convert convert SE2 object or SE(2) matrix to SE2 object

double convert to rotation matrix

R convert to rotation matrix

SE3 convert to SE3 object with zero translation

SO2 convert rotational part to SO2 object

T convert to homogeneous transformation matrix

Twist convert to Twist object

t get.t: convert to translation column vector

Compatibility methods::

isrot2 ^returns false

ishomog2 ^returns true

tr2rt ^convert to rotation matrix and translation vector

t2r ^convert to rotation matrix

transl2 ^translation as a row vector

trprint2 ^print single line representation

trplot2 ^plot coordinate frame

tranimate2 ^animate coordinate frame

^ inherited from RTBPose class.

【机器人工具箱学习笔记】第二章 位置与姿态描述_tr2angvec-CSDN博客文章浏览阅读752次,点赞4次,收藏11次。二维{B}相对于A的相对位姿/对{A}施加平移和旋转使它转化为{B}2.2矩阵指数由【3B1B笔记】e的矩阵指数------怎么算?为什么?知:,即R = expm(skew(θ) ),也即2.4旋转RX绕原点旋转,而XR绕X点旋转。而对于绕C旋转的XC,从右向左读,先将C点转换到原点,绕C旋转,然后再将坐标系平移回C二维twist的中心思想即为:任何坐标变换均为绕某点的旋转?欧拉角:ZYZ序列 eul2r横滚-俯仰-偏航角(卡尔丹角/泰特-布莱恩角/导航角): XYZ序列 rpy2r双向_tr2angvechttps://blog.csdn.net/qq_46142162/article/details/129547023

相关推荐
fengye2071614 小时前
总结VM 17 + ubuntu22+moltbot+LlamaIndex + Ollama+qwen:1.8b安装
机器人
GAOJ_K4 小时前
滚珠花键的无预压、间隙调整与过盈配合“场景适配型”
人工智能·科技·机器人·自动化·制造
机器觉醒时代12 小时前
Helix 02 :移动+操作融合,解锁人形机器人全身控制的VLA模型
机器人·ai大模型·具身智能·人形机器人
DN202013 小时前
AI销售机器人:节日祝福转化率提升30倍
人工智能·python·深度学习·机器学习·机器人·节日
藦卡机器人14 小时前
国内搬运机器人品牌做的比较好的有哪些?
机器人
DN202016 小时前
AI销售机器人的隐私痛点与破解之道
人工智能·python·机器学习·机器人·节日
码农三叔17 小时前
(7-3-02)电机与执行器系统:驱动器开发与控制接口(2)实时通信总线设计+33自由度人形机器人的双信道EtherCAT主设备架构
人工智能·机器人·人形机器人
中國龍在廣州19 小时前
AI时代“新BAT”正在崛起
大数据·人工智能·深度学习·重构·机器人
犀思云1 天前
如何通过网络即服务平台实现企业数字化转型?
运维·网络·人工智能·系统架构·机器人
机器视觉的发动机1 天前
从实验室到工业现场:机器人视觉感知系统的边缘AI架构实战, 深度解析硬件选型、TensorRT量化加速与多传感器融合的极致优化方案
人工智能·机器人·视觉检测·人机交互·机器视觉