机器人坐标系转换

SE2 Representation of 2D rigid-body motion

This subclasss of RTBPose is an object that represents rigid-body motion in 2D.

Internally this is a 3x3 homogeneous transformation matrix (3x3) belonging to

the group SE(2).

Constructor methods::

SE2 general constructor

SE2.exp exponentiate an se(2) matrix

SE2.rand random transformation

new new SE2 object

Display and print methods::

animate ^graphically animate coordinate frame for pose

display ^print the pose in human readable matrix form

plot ^graphically display coordinate frame for pose

print ^print the pose in single line format

Group operations::

* ^mtimes: multiplication (group operator, transform point)

/ ^mrdivide: multiply by inverse

^ ^mpower: exponentiate (integer only):

inv inverse

prod ^product of elements

Methods::

det determinant of matrix component

eig eigenvalues of matrix component

log logarithm of rotation matrix

inv inverse

simplify* apply symbolic simplication to all elements

interp interpolate between poses

theta rotation angle

Information and test methods::

dim ^returns 2

isSE ^returns true

issym ^test if rotation matrix has symbolic elements

SE2.isa test if matrix is SE(2)

Conversion methods::

char* convert to human readable matrix as a string

SE2.convert convert SE2 object or SE(2) matrix to SE2 object

double convert to rotation matrix

R convert to rotation matrix

SE3 convert to SE3 object with zero translation

SO2 convert rotational part to SO2 object

T convert to homogeneous transformation matrix

Twist convert to Twist object

t get.t: convert to translation column vector

Compatibility methods::

isrot2 ^returns false

ishomog2 ^returns true

tr2rt ^convert to rotation matrix and translation vector

t2r ^convert to rotation matrix

transl2 ^translation as a row vector

trprint2 ^print single line representation

trplot2 ^plot coordinate frame

tranimate2 ^animate coordinate frame

^ inherited from RTBPose class.

【机器人工具箱学习笔记】第二章 位置与姿态描述_tr2angvec-CSDN博客文章浏览阅读752次,点赞4次,收藏11次。二维{B}相对于A的相对位姿/对{A}施加平移和旋转使它转化为{B}2.2矩阵指数由【3B1B笔记】e的矩阵指数------怎么算?为什么?知:,即R = expm(skew(θ) ),也即2.4旋转RX绕原点旋转,而XR绕X点旋转。而对于绕C旋转的XC,从右向左读,先将C点转换到原点,绕C旋转,然后再将坐标系平移回C二维twist的中心思想即为:任何坐标变换均为绕某点的旋转?欧拉角:ZYZ序列 eul2r横滚-俯仰-偏航角(卡尔丹角/泰特-布莱恩角/导航角): XYZ序列 rpy2r双向_tr2angvechttps://blog.csdn.net/qq_46142162/article/details/129547023

相关推荐
kyle~2 分钟前
Opencv---深度学习开发
人工智能·深度学习·opencv·计算机视觉·机器人
探讨探讨AGV1 小时前
以科技赋能未来,科聪持续支持青年创新实践 —— 第七届“科聪杯”浙江省大学生智能机器人创意竞赛圆满落幕
人工智能·科技·机器人
沫儿笙1 天前
弧焊机器人气体全方位节能指南
网络·人工智能·机器人
Axis tech1 天前
丰田将协作机器人与现有设备相结合,以实现超高负载能力和安全性
机器人
PNP机器人1 天前
普林斯顿大学DPPO机器人学习突破:Diffusion Policy Policy Optimization 全新优化扩散策略
人工智能·深度学习·学习·机器人·仿真平台·franka fr3
cnbestec2 天前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
Shilong Wang2 天前
三维旋转沿轴分解
算法·计算机视觉·机器人
xiyuping242 天前
ROS1学习第二弹
学习·机器人
杨小扩3 天前
第4章:实战项目一 打造你的第一个AI知识库问答机器人 (RAG)
人工智能·机器人
合力亿捷-小亿3 天前
从应答工具到服务大脑:智能客服机器人三代技术升级路径及3大行业场景落地全解析
机器人