机器人坐标系转换

SE2 Representation of 2D rigid-body motion

This subclasss of RTBPose is an object that represents rigid-body motion in 2D.

Internally this is a 3x3 homogeneous transformation matrix (3x3) belonging to

the group SE(2).

Constructor methods::

SE2 general constructor

SE2.exp exponentiate an se(2) matrix

SE2.rand random transformation

new new SE2 object

Display and print methods::

animate ^graphically animate coordinate frame for pose

display ^print the pose in human readable matrix form

plot ^graphically display coordinate frame for pose

print ^print the pose in single line format

Group operations::

* ^mtimes: multiplication (group operator, transform point)

/ ^mrdivide: multiply by inverse

^ ^mpower: exponentiate (integer only):

inv inverse

prod ^product of elements

Methods::

det determinant of matrix component

eig eigenvalues of matrix component

log logarithm of rotation matrix

inv inverse

simplify* apply symbolic simplication to all elements

interp interpolate between poses

theta rotation angle

Information and test methods::

dim ^returns 2

isSE ^returns true

issym ^test if rotation matrix has symbolic elements

SE2.isa test if matrix is SE(2)

Conversion methods::

char* convert to human readable matrix as a string

SE2.convert convert SE2 object or SE(2) matrix to SE2 object

double convert to rotation matrix

R convert to rotation matrix

SE3 convert to SE3 object with zero translation

SO2 convert rotational part to SO2 object

T convert to homogeneous transformation matrix

Twist convert to Twist object

t get.t: convert to translation column vector

Compatibility methods::

isrot2 ^returns false

ishomog2 ^returns true

tr2rt ^convert to rotation matrix and translation vector

t2r ^convert to rotation matrix

transl2 ^translation as a row vector

trprint2 ^print single line representation

trplot2 ^plot coordinate frame

tranimate2 ^animate coordinate frame

^ inherited from RTBPose class.

【机器人工具箱学习笔记】第二章 位置与姿态描述_tr2angvec-CSDN博客文章浏览阅读752次,点赞4次,收藏11次。二维{B}相对于A的相对位姿/对{A}施加平移和旋转使它转化为{B}2.2矩阵指数由【3B1B笔记】e的矩阵指数------怎么算?为什么?知:,即R = expm(skew(θ) ),也即2.4旋转RX绕原点旋转,而XR绕X点旋转。而对于绕C旋转的XC,从右向左读,先将C点转换到原点,绕C旋转,然后再将坐标系平移回C二维twist的中心思想即为:任何坐标变换均为绕某点的旋转?欧拉角:ZYZ序列 eul2r横滚-俯仰-偏航角(卡尔丹角/泰特-布莱恩角/导航角): XYZ序列 rpy2r双向_tr2angvechttps://blog.csdn.net/qq_46142162/article/details/129547023

相关推荐
光锥智能1 小时前
以机器为中心到以人为中心,大晓机器人首创ACE具身研发范式
机器人
weixin_455524262 小时前
装配机器人推荐,从技术原理到选型指南,解锁智能制造新动力
机器人
猿饵块4 小时前
机器人--move_type/移动类型
机器人
Deepoch8 小时前
中国具身智能三大路径:极限挑战、柔性操作、普惠赋能,竞合共生
大数据·人工智能·物联网·机器人·具身模型·deepoc
沫儿笙9 小时前
发那科弧焊机器人保护气节气设备
人工智能·机器人
TMT星球10 小时前
首创ACE具身研发范式,大晓机器人构建具身智能开放新生态
机器人
cetcht888812 小时前
35kV-750kV 变电站集中监控系统(涵盖火灾消防、安全防卫、动环、智能锁控、智能巡视等) 设备配置与布置
大数据·运维·物联网·机器人·能源
CES_Asia12 小时前
政策x技术x市场:三位一体推动机器人产业爆发
大数据·人工智能·科技·机器人
ASS-ASH12 小时前
机器人灵巧手:技术演进、市场格局与未来前景
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·灵巧手
Deepoch12 小时前
“即插即用”的智能升级:具身智能模块如何破解机器人产业化难题
人工智能·科技·机器人·开发板·未来·具身模型·deepoc