激光与相机融合标定汇总:提升融合算法的精度与可靠性(附github地址)

前言

随着科技的飞速发展,激光技术与相机技术的融合已成为推动智能化影像发展的重要力量。这种融合不仅提高了成像的精度和效率,还为相关行业带来了革命性的变革。在这篇博客中,我们将深入探讨激光与相机融合标定的原理及其在各个领域的应用前景。

一、激光与相机融合标定的原理

激光与相机融合标定是一种基于激光测距和相机成像技术的综合标定方法。通过激光测距获取目标点的三维坐标,结合相机拍摄的二维图像信息,实现三维空间与二维平面的精确对应。这一过程涉及多个关键步骤,包括激光扫描、图像处理、坐标转换和融合算法等。

二、标定算法分类

1、采用标定物体(一般为棋盘格,ArUco,也可以是矩形板上镂空出特定形状)

1.0 CamLaserCalibraTool

标定原理如下图所示,相机通过二维码估计标定板平面在相机坐标系下的平面方程,由于激光点云落在平面上,将点云通过激光坐标系到相机坐标系的外参数 <math xmlns="http://www.w3.org/1998/Math/MathML"> T c l T_{cl} </math>Tcl 转换到相机坐标系,构建点到平面的距离作为误差,使用非线性最小二乘进行求解。

1.1 OpenCalib/JointCalib

基于2D-3D correspondence*,首先进行目标检测,然后通过棋盘格计算相机内参数和板相机外参数得到3D-2D激光雷达和相机的对应点。最后进行非线性优化,得到最终的标定值 参数.

二.无特定目标物标定

2.1 基于运动的方法**

multiple-cameras-and-3D-LiDARs-extrinsic-calibration

联合3D-3D和2D-3D功能的视觉演示通过三角形匹配进行对应匹配。3D-3D 立体帧跟踪中的三角形匹配。2D-3D 三角形相机定位匹配。

2.2 基于场景检测检测的方法

2.2.1传统方法

livox_camera_calib

基于边缘信息检测匹配的方法

mlcc

基于图片快与点云特征匹配,实现了自适应体素化以加速特征对应匹配过程。点云图被动态分割成大小不同的体素,使得每个体素中仅包含一个平面特征。

2.2.2 深度学习

LCCNet!

LCCNet 是一个在线激光雷达相机自校准网络(LCCNet),可以进行端到端训练并实时预测外部参数。在 LCCNet 中,我们利用成本体积层来表达 RGB 图像特征和从点云投影的深度图像之间的外参。

总结:

激光与相机融合标定是计算机视觉领域的一个重要研究方向。通过建立激光雷达坐标系与相机坐标系之间的转换关系,可以实现激光点云与图像像素之间的准确匹配

欢迎关注我的公众号auto_drive_ai(Ai fighting),第一时间获取更新内容。

相关推荐
希尔伯特旅馆2 小时前
Tushare:量化投资数据获取
github
海绵不是宝宝81716 小时前
连接远程服务器上的 jupyter notebook,解放本地电脑
服务器·jupyter·github
黑客飓风18 小时前
当GitHub宕机时,我们如何协作?
github·notepad++
mit6.8241 天前
[Git] 如何拉取 GitHub 仓库的特定子目录
git·github
用户466537015051 天前
如何在 IntelliJ IDEA 中可视化压缩提交到生产分支
后端·github
用户466537015051 天前
git代码压缩合并
后端·github
若水晴空初如梦1 天前
QT聊天项目DAY19
github
张较瘦_1 天前
[论文阅读] 人工智能 | 当Hugging Face遇上GitHub:预训练语言模型的跨平台同步难题与解决方案
论文阅读·人工智能·github
掘金安东尼1 天前
字节前端三面复盘:基础不花哨,代码要扎实(含高频题解)
前端·面试·github
寻月隐君1 天前
Rust Web 开发实战:使用 SQLx 连接 PostgreSQL 数据库
后端·rust·github