神经网络图形绘制

在python机器学习中会遇到各种各样的神经网络图形,以下为例子:

"""======================

Betweenness Centrality

======================

Betweenness centrality measures of positive gene functional associations

using WormNet v.3-GS.

Data from: https://www.inetbio.org/wormnet/downloadnetwork.php

"""

from random import sample

import networkx as nx

import matplotlib.pyplot as plt

Gold standard data of positive gene functional associations

from https://www.inetbio.org/wormnet/downloadnetwork.php

G = nx.read_edgelist("D:/OneDrive - stu.fynu.edu.cn/Gephi/WormNet.v3.benchmark.txt")

remove randomly selected nodes (to make example fast)

num_to_remove = int(len(G) / 1.5)

nodes = sample(list(G.nodes), num_to_remove)

G.remove_nodes_from(nodes)

remove low-degree nodes

low_degree = [n for n, d in G.degree() if d < 10]

G.remove_nodes_from(low_degree)

largest connected component

components = nx.connected_components(G)

largest_component = max(components, key=len)

H = G.subgraph(largest_component)

compute centrality

centrality = nx.betweenness_centrality(H, k=10, endpoints=True)

compute community structure

lpc = nx.community.label_propagation_communities(H)

community_index = {n: i for i, com in enumerate(lpc) for n in com}

draw graph

fig, ax = plt.subplots(figsize=(20, 15))

pos = nx.spring_layout(H, k=0.15, seed=4572321)

node_color = [community_index[n] for n in H]

node_size = [v * 20000 for v in centrality.values()]

nx.draw_networkx(

H,

pos=pos,

with_labels=False,

node_color=node_color,

node_size=node_size,

edge_color="gainsboro",

alpha=0.4,

)

Title/legend

font = {"color": "k", "fontweight": "bold", "fontsize": 20}

ax.set_title("Gene functional association network (C. elegans)", font)

Change font color for legend

font["color"] = "r"

ax.text(

0.80,

0.10,

"",

#"node color = community structure",

horizontalalignment="center",

transform=ax.transAxes,

fontdict=font,

)

ax.text(

0.80,

0.06,

"",

#"node size = betweenness centrality",

horizontalalignment="center",

transform=ax.transAxes,

fontdict=font,

)

Resize figure for label readability

ax.margins(0.1, 0.05)

fig.tight_layout()

plt.axis("off")

plt.savefig("D:/OneDrive - stu.fynu.edu.cn/Gephi/WormNet.v3.benchmark.png")

plt.show()

这样绘制出图形如下:

相关推荐
带娃的IT创业者32 分钟前
机器学习实战(8):降维技术——主成分分析(PCA)
人工智能·机器学习·分类·聚类
饮长安千年月2 小时前
Linksys WRT54G路由器溢出漏洞分析–运行环境修复
网络·物联网·学习·安全·机器学习
flying robot3 小时前
人工智能基础之数学基础:01高等数学基础
人工智能·机器学习
Moutai码农3 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
Jackilina_Stone4 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
studyer_domi7 小时前
matlab欠驱动船舶模型预测控制
人工智能·机器学习·matlab
深蓝学院7 小时前
LLM增强的RLHF框架,用多模态人类反馈提升自动驾驶安全性!
人工智能·机器学习·自动驾驶
North_D9 小时前
ML.NET库学习008:使用ML.NET进行心脏疾病预测模型开发
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘
望云山19010 小时前
第二章:16.5 决策树处理连续值特征
算法·决策树·机器学习
CoderIsArt11 小时前
机器学习(1)安装Pytorch
人工智能·pytorch·机器学习