昇思MindSpore学习笔记4--数据集 Dataset

昇思MindSpore学习笔记4--数据集 Dataset

摘要:

昇思MindSpore数据集Dataset的加载、数据集常见操作和自定义数据集方法。

一、数据集 Dataset概念

MindSpore数据引擎基于Pipeline

数据预处理相关模块:

数据集Dataset加载原始数据,支持文本、图像、音频和自定义数据集。

数据变换Transforms

预加载数据集API一键下载

二、环境准备

安装minspore模块

复制代码
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1

导入minspore、dataset等相关模块

复制代码
import numpy as np
from mindspore.dataset import vision
from mindspore.dataset import MnistDataset, GeneratorDataset
import matplotlib.pyplot as plt

三、数据集加载

1.下载数据

复制代码
# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

输出:

复制代码
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)

file_sizes: 100%|███████████████████████████| 10.8M/10.8M [00:00<00:00, 151MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./

2.加载数据集

复制代码
train_dataset = MnistDataset("MNIST_Data/train", shuffle=False)
print(type(train_dataset))

输出:

复制代码
<class 'mindspore.dataset.engine.datasets_vision.MnistDataset'>

四、数据集迭代

数据迭代器

create_tuple_iterator

create_dict_iterator

默认访问数据类型为Tensor

若设置output_numpy=True,访问数据类型为Numpy

示例,迭代显示9张图片。

复制代码
def visualize(dataset):
    figure = plt.figure(figsize=(4, 4))
    cols, rows = 3, 3

    plt.subplots_adjust(wspace=0.5, hspace=0.5)

    for idx, (image, label) in enumerate(dataset.create_tuple_iterator()):
        figure.add_subplot(rows, cols, idx + 1)
        plt.title(int(label))
        plt.axis("off")
        plt.imshow(image.asnumpy().squeeze(), cmap="gray")
        if idx == cols * rows - 1:
            break
plt.show()

visualize(train_dataset)

输出:

五、数据集常用操作

Pipeline引擎采用异步执行的设计。

dataset = dataset.operation()只在Pipeline中注册操作节点并不执行,并记录获取返回数据集对象的句柄,实际操作在整个Pipeline迭代时执行。

  1. shuffle

消除数据排列分布不均问题。

数据集加载时配置shuffle=True

复制代码
MnistDataset("MNIST_Data/train", shuffle=True)

采用dataset.shuffle()

复制代码
train_dataset = train_dataset.shuffle(buffer_size=64)
visualize(train_dataset)

输出:

  1. map

为数据集指定列column添加数据变换Transforms,应用于该列的每个元素。

复制代码
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape, image.dtype)

输出:

复制代码
(28, 28, 1) UInt8

数据缩放处理,将图像统一除以255,数据类型由uint8转为了float32。

复制代码
train_dataset = train_dataset.map(vision.Rescale(1.0/255.0,0), input_columns='image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape, image.dtype)

输出:

复制代码
(28, 28, 1) Float32
  1. batch

将数据集按固定大小batch_size打包成若干批,以便后续处理。

打包后的数据增加一维,大小为batch_size

复制代码
train_dataset = train_dataset.batch(batch_size=32)
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape, image.dtype)

输出:

复制代码
(32, 28, 28, 1) Float32

六、自定义数据集

GeneratorDataset接口加载自定义数据集。

  1. 可随机访问数据集

实现__getitem__和__len__方法

通过索引/键直接访问对应位置的数据样本,例如dataset[idx]。

复制代码
# Random-accessible object as input source
class RandomAccessDataset:
    def __init__(self):
        self._data = np.ones((5, 2))
        self._label = np.zeros((5, 1))

    def __getitem__(self, index):
        return self._data[index], self._label[index]

    def __len__(self):
        return len(self._data)

loader = RandomAccessDataset()
dataset = GeneratorDataset(source=loader, column_names=["data", "label"])

for data in dataset:
    print(data)

输出:

复制代码
[Tensor(shape=[2], dtype=Float64, value= [ 1.00000000e+00,  1.00000000e+00]), Tensor(shape=[1], dtype=Float64, value= [ 0.00000000e+00])]
[Tensor(shape=[2], dtype=Float64, value= [ 1.00000000e+00,  1.00000000e+00]), Tensor(shape=[1], dtype=Float64, value= [ 0.00000000e+00])]
[Tensor(shape=[2], dtype=Float64, value= [ 1.00000000e+00,  1.00000000e+00]), Tensor(shape=[1], dtype=Float64, value= [ 0.00000000e+00])]
[Tensor(shape=[2], dtype=Float64, value= [ 1.00000000e+00,  1.00000000e+00]), Tensor(shape=[1], dtype=Float64, value= [ 0.00000000e+00])]
[Tensor(shape=[2], dtype=Float64, value= [ 1.00000000e+00,  1.00000000e+00]), Tensor(shape=[1], dtype=Float64, value= [ 0.00000000e+00])]

# list, tuple are also supported.
loader = [np.array(0), np.array(1), np.array(2)]
dataset = GeneratorDataset(source=loader, column_names=["data"])

for data in dataset:
    print(data)

输出:

复制代码
[Tensor(shape=[], dtype=Int64, value= 1)]
[Tensor(shape=[], dtype=Int64, value= 2)]
[Tensor(shape=[], dtype=Int64, value= 0)]
  1. 可迭代数据集

实现__iter__和__next__方法

可迭代获取数据样本,使用iter(dataset)的形式访问数据集时,可以读取从数据库、远程服务器返回的数据流。

复制代码
# Iterator as input source
class IterableDataset():
    def __init__(self, start, end):
        '''init the class object to hold the data'''
        self.start = start
        self.end = end
    def __next__(self):
        '''iter one data and return'''
        return next(self.data)
    def __iter__(self):
        '''reset the iter'''
        self.data = iter(range(self.start, self.end))
        return self

loader = IterableDataset(1, 5)
dataset = GeneratorDataset(source=loader, column_names=["data"])
for d in dataset:
    print(d)

输出:

复制代码
[Tensor(shape=[], dtype=Int64, value= 1)]
[Tensor(shape=[], dtype=Int64, value= 2)]
[Tensor(shape=[], dtype=Int64, value= 3)]
[Tensor(shape=[], dtype=Int64, value= 4)]
  1. 生成器

属于可迭代数据集,直接依赖Python生成器类型generator返回数据,直至生成器抛出StopIteration异常。

复制代码
# Generator
def my_generator(start, end):
    for i in range(start, end):
        yield i

# since a generator instance can be only iterated once, we need to wrap it by lambda to generate multiple instances
dataset = GeneratorDataset(source=lambda: my_generator(3, 6), column_names=["data"])

for d in dataset:
    print(d)

输出:

复制代码
[Tensor(shape=[], dtype=Int64, value= 3)]
[Tensor(shape=[], dtype=Int64, value= 4)]
[Tensor(shape=[], dtype=Int64, value= 5)]
相关推荐
云上艺旅21 小时前
K8S学习之基础七十四:部署在线书店bookinfo
学习·云原生·容器·kubernetes
你觉得20521 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
A旧城以西1 天前
数据结构(JAVA)单向,双向链表
java·开发语言·数据结构·学习·链表·intellij-idea·idea
无所谓จุ๊บ1 天前
VTK知识学习(50)- 交互与Widget(一)
学习·vtk
FAREWELL000751 天前
C#核心学习(七)面向对象--封装(6)C#中的拓展方法与运算符重载: 让代码更“聪明”的魔法
学习·c#·面向对象·运算符重载·oop·拓展方法
吴梓穆1 天前
UE5学习笔记 FPS游戏制作38 继承标准UI
笔记·学习·ue5
Three~stone1 天前
MySQL学习集--DDL
数据库·sql·学习
齐尹秦1 天前
HTML 音频(Audio)学习笔记
学习
V---scwantop---信1 天前
英文字体:大胆都市街头Y2Y涂鸦风格品牌海报专辑封面服装字体 Chrome TM – Graffiti Font
笔记·字体
瞌睡不来1 天前
(学习总结32)Linux 基础 IO
linux·学习·io