Pydantic 库介绍

Pydantic 是一个用于数据验证和序列化的 Python 库,它是基于 Python 类型提示(type hints)的。它能够根据定义的模型类自动进行数据验证、转换和文档生成。主要用于处理数据的输入验证和输出转换,特别适用于构建 API。以下是一个简单的例子来说明 Pydantic 的基本用法:

复制代码
from pydantic import BaseModel, ValidationError

# 定义 Pydantic 模型
class User(BaseModel):
    username: str
    email: str

# 创建一个符合模型的实例
user_data = {
    "username": "john_doe",
    "email": "john.doe@example.com"
}

try:
    # 尝试通过模型验证数据
    user = User(**user_data)
    print("Data is valid:")
    print(user.json())  # 将 Pydantic 模型转换为 JSON 字符串
except ValidationError as e:
    # 如果数据无效,将显示验证错误
    print("Validation error:")
    print(e)

在上面的例子中,定义了一个名为 UserPydantic 模型,它有两个属性:usernameemail,都有相应的类型提示。可以通过创建一个 User 类的实例,并传递一个包含相应字段的字典来验证和初始化数据。

try 块中,尝试使用提供的数据创建 User 实例。如果数据有效,就可以访问 user 对象并将其转换为 JSON 字符串。如果数据无效,将抛出 ValidationError 异常,可以捕获并查看其中的详细信息。

Pydantic 支持丰富的功能,包括字段类型验证、默认值、文档生成、数据转换等。这使得它成为处理数据验证和转换的强大工具,尤其在构建 Web API 或处理用户输入时非常有用。

相关推荐
小兵张健5 分钟前
Java + Spring 到 Python + FastAPI (一)
java·python·spring
2401_841495641 小时前
【自然语言处理】基于统计基的句子边界检测算法
人工智能·python·算法·机器学习·自然语言处理·统计学习·句子边界检测算法
程序员爱钓鱼1 小时前
Python编程实战 - Python实用工具与库 - 操作Word:python-docx
后端·python
程序员爱钓鱼1 小时前
Python编程实战 - Python实用工具与库 - 操作PDF:pdfplumber、PyPDF2
后端·python
啾啾啾6661 小时前
连接一个新的服务器时,打开PyCharm时报错:报错内容是服务器磁盘或配额满了
python·pycharm
长不大的蜡笔小新1 小时前
掌握NumPy:ndarray核心特性与创建
开发语言·python·numpy
luoganttcc1 小时前
已知 空间 三个 A,B C 点 ,求 顺序 经过 A B C 三点 圆弧 轨迹 ,给出 python 代码 并且 画出图像
c语言·开发语言·python
Q_Q5110082852 小时前
python+django/flask的图书馆管理系统vue
spring boot·python·django·flask·node.js·php
cwh_rs_giser2 小时前
如何高效设置机器学习超参数?——借鉴成熟AutoML框架的实践
人工智能·python·机器学习
逻极2 小时前
Scikit-learn 入门指南:从零到一掌握机器学习经典库(2025 最新版)
人工智能·python·机器学习·ai·scikit-learn·agent