Pydantic 库介绍

Pydantic 是一个用于数据验证和序列化的 Python 库,它是基于 Python 类型提示(type hints)的。它能够根据定义的模型类自动进行数据验证、转换和文档生成。主要用于处理数据的输入验证和输出转换,特别适用于构建 API。以下是一个简单的例子来说明 Pydantic 的基本用法:

复制代码
from pydantic import BaseModel, ValidationError

# 定义 Pydantic 模型
class User(BaseModel):
    username: str
    email: str

# 创建一个符合模型的实例
user_data = {
    "username": "john_doe",
    "email": "john.doe@example.com"
}

try:
    # 尝试通过模型验证数据
    user = User(**user_data)
    print("Data is valid:")
    print(user.json())  # 将 Pydantic 模型转换为 JSON 字符串
except ValidationError as e:
    # 如果数据无效,将显示验证错误
    print("Validation error:")
    print(e)

在上面的例子中,定义了一个名为 UserPydantic 模型,它有两个属性:usernameemail,都有相应的类型提示。可以通过创建一个 User 类的实例,并传递一个包含相应字段的字典来验证和初始化数据。

try 块中,尝试使用提供的数据创建 User 实例。如果数据有效,就可以访问 user 对象并将其转换为 JSON 字符串。如果数据无效,将抛出 ValidationError 异常,可以捕获并查看其中的详细信息。

Pydantic 支持丰富的功能,包括字段类型验证、默认值、文档生成、数据转换等。这使得它成为处理数据验证和转换的强大工具,尤其在构建 Web API 或处理用户输入时非常有用。

相关推荐
十二月将至5 分钟前
python读取文件的常用操作
网络·python
爱砸键盘的懒洋洋10 分钟前
Python第四课:数据类型与转换
开发语言·python
Dyan_csdn1 小时前
Python系统设计选题-49
开发语言·python
2401_831501732 小时前
Python学习之day01学习(变量定义和数据类型使用)
开发语言·python·学习
倔强青铜三2 小时前
苦练Python第61天:logging模块——让Python日志“有迹可循”的瑞士军刀
人工智能·python·面试
倔强青铜三2 小时前
苦练Python第60天:json模块——让Python和JSON“无缝互译”的神兵利器
人工智能·python·面试
孤客网络科技工作室2 小时前
Python - 100天从新手到大师:第二十七天Python操作PDF文件
开发语言·python·pdf
悬剑13142 小时前
python简易程序跑NLPIR模型
python·nlpir
wheeldown3 小时前
【Leetcode高效算法】用双指针策略打破有效三角形的个数
python·算法·leetcode
真的想不出名儿3 小时前
登录前验证码校验实现
java·前端·python