Pydantic 库介绍

Pydantic 是一个用于数据验证和序列化的 Python 库,它是基于 Python 类型提示(type hints)的。它能够根据定义的模型类自动进行数据验证、转换和文档生成。主要用于处理数据的输入验证和输出转换,特别适用于构建 API。以下是一个简单的例子来说明 Pydantic 的基本用法:

复制代码
from pydantic import BaseModel, ValidationError

# 定义 Pydantic 模型
class User(BaseModel):
    username: str
    email: str

# 创建一个符合模型的实例
user_data = {
    "username": "john_doe",
    "email": "john.doe@example.com"
}

try:
    # 尝试通过模型验证数据
    user = User(**user_data)
    print("Data is valid:")
    print(user.json())  # 将 Pydantic 模型转换为 JSON 字符串
except ValidationError as e:
    # 如果数据无效,将显示验证错误
    print("Validation error:")
    print(e)

在上面的例子中,定义了一个名为 UserPydantic 模型,它有两个属性:usernameemail,都有相应的类型提示。可以通过创建一个 User 类的实例,并传递一个包含相应字段的字典来验证和初始化数据。

try 块中,尝试使用提供的数据创建 User 实例。如果数据有效,就可以访问 user 对象并将其转换为 JSON 字符串。如果数据无效,将抛出 ValidationError 异常,可以捕获并查看其中的详细信息。

Pydantic 支持丰富的功能,包括字段类型验证、默认值、文档生成、数据转换等。这使得它成为处理数据验证和转换的强大工具,尤其在构建 Web API 或处理用户输入时非常有用。

相关推荐
我送炭你添花9 分钟前
Pelco KBD300A 模拟器:06+2.Pelco KBD300A 模拟器项目重构指南
python·重构·自动化·运维开发
Swizard11 分钟前
别再只会算直线距离了!用“马氏距离”揪出那个伪装的数据“卧底”
python·算法·ai
站大爷IP12 分钟前
Python函数与模块化编程:局部变量与全局变量的深度解析
python
我命由我1234520 分钟前
Python Flask 开发问题:ImportError: cannot import name ‘Markup‘ from ‘flask‘
开发语言·后端·python·学习·flask·学习方法·python3.11
databook28 分钟前
掌握相关性分析:读懂数据间的“悄悄话”
python·数据挖掘·数据分析
全栈陈序员1 小时前
【Python】基础语法入门(二十)——项目实战:从零构建命令行 To-Do List 应用
开发语言·人工智能·python·学习
jcsx1 小时前
如何将django项目发布为https
python·https·django
岁月宁静1 小时前
LangGraph 技术详解:基于图结构的 AI 工作流与多智能体编排框架
前端·python·langchain
百锦再1 小时前
京东云鼎入驻方案解读——通往协同的“高架桥”与“快速路”
android·java·python·rust·django·restful·京东云
岁月宁静1 小时前
LangChain 技术栈全解析:从模型编排到 RAG 实战
前端·python·langchain