机器人运动范围检测 c++

地上有一个m行n列的方格,一个机器人从坐标(0,0)的格子开始移动,它每次可以向上下左右移动一个格子,但不能进入行坐标和列坐标的位数之和大于k的格子,请问机器人能够到达多少个格子

cpp 复制代码
#include <vector> // 包含vector头文件
#include <queue> // 包含queue头文件

class Solution { // 定义解决方案类
private:
    int getSum(int x, int y) { // 计算坐标数位之和
        int sum = 0; // 初始化和为0
        while (x > 0) { // 处理x坐标
            sum += x % 10; // 加上个位数
            x /= 10; // 去掉个位数
        }
        while (y > 0) { // 处理y坐标
            sum += y % 10; // 加上个位数
            y /= 10; // 去掉个位数
        }
        return sum; // 返回数位之和
    }

public:
    int movingCount(int m, int n, int k) { // 计算可到达的格子数
        if (k < 0) return 0; // 如果k小于0,无法移动
        
        std::vector<std::vector<bool>> visited(m, std::vector<bool>(n, false)); // 记录已访问的格子
        std::queue<std::pair<int, int>> q; // 用于BFS的队列
        int count = 0; // 可到达的格子数
        
        q.push({0, 0}); // 起始点加入队列
        visited[0][0] = true; // 标记起始点为已访问
        
        int dx[4] = {-1, 1, 0, 0}; // x方向的移动
        int dy[4] = {0, 0, -1, 1}; // y方向的移动
        
        while (!q.empty()) { // BFS主循环
            auto [x, y] = q.front(); // 获取当前格子坐标
            q.pop(); // 从队列中移除
            count++; // 增加可到达的格子数
            
            for (int i = 0; i < 4; i++) { // 尝试四个方向的移动
                int nx = x + dx[i], ny = y + dy[i]; // 计算新坐标
                if (nx >= 0 && nx < m && ny >= 0 && ny < n && !visited[nx][ny] && getSum(nx, ny) <= k) { // 检查新坐标是否有效
                    q.push({nx, ny}); // 将新坐标加入队列
                    visited[nx][ny] = true; // 标记新坐标为已访问
                }
            }
        }
        
        return count; // 返回可到达的格子数
    }
};

这个实现使用了广度优先搜索(BFS)算法来解决问题。以下是主要的设计思路:

  1. 我们定义了一个Solution类,其中包含两个主要函数:
    • getSum: 这是一个私有辅助函数,用于计算坐标的数位之和。
    • movingCount: 这是公共接口函数,用于计算机器人能够到达的格子数量。
  2. movingCount函数中:
    • 我们使用一个二维布尔数组visited来记录已经访问过的格子。
    • 使用一个队列q来进行BFS。
    • 从(0,0)开始,将其加入队列并标记为已访问。
    • 使用一个while循环进行BFS,每次从队列中取出一个格子,然后尝试向四个方向移动。
    • 对于每个新的可能位置,我们检查:
      1. 是否在网格范围内
      2. 是否已经被访问过
      3. 数位之和是否不大于k
    • 如果满足所有条件,我们将新位置加入队列,并标记为已访问。
    • 每访问一个新的格子,我们就将计数器加1。
  3. 最后返回计数器的值,即为机器人能够到达的格子数量。

这个算法的时间复杂度为O(mn),其中m和n分别是网格的行数和列数。空间复杂度也是O(mn),主要用于存储visited数组和BFS队列。

相关推荐
清安无别事7 分钟前
闲聊?泳池清洁机器人?
机器人
zhd15306915625ff8 分钟前
库卡机器人维护需要注意哪些事项
安全·机器人·自动化
宋138102797204 小时前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉
禁默5 小时前
第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)
人工智能·机器人·智能控制
Robot25118 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
FreeIPCC21 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
施努卡机器视觉1 天前
电解车间铜业机器人剥片技术是现代铜冶炼过程中自动化和智能化的重要体现
运维·机器人·自动化
zhd15306915625ff1 天前
库卡机器人日常维护
网络·机器人·自动化·机器人备件
古月居GYH1 天前
ROS一键安装脚本
人工智能·机器人·ros
清流君1 天前
【运动规划】移动机器人运动规划与轨迹优化全解析 | 经典算法总结
人工智能·笔记·算法·机器人·自动驾驶·运动规划