用Hugging Face Transformers,高效部署:多显卡量化感知训练并转换为ONNX格式的多标签分类模型

文章目录

要在多显卡上进行量化感知训练(QAT),然后将量化后的模型转换为 ONNX 格式并部署到移动设备,可以按照以下步骤进行:

环境准备

确保你已经安装了必要的库:

bash 复制代码
pip install torch torchvision transformers onnx

数据准备

假设你有一个数据集,每张图片对应多个标签,数据格式类似于:

  • images/
    • image1.jpg
    • image2.jpg
    • ...
  • labels.csv

labels.csv 文件内容示例如下:

复制代码
filename,label1,label2,...
image1.jpg,1,0,...
image2.jpg,0,1,...
...

数据集定义

定义一个自定义的数据集类来加载图像和对应的标签:

python 复制代码
import torch
from torch.utils.data import Dataset
from torchvision import transforms
from PIL import Image
import pandas as pd
import os

class MultiLabelDataset(Dataset):
    def __init__(self, csv_file, root_dir, transform=None):
        self.labels = pd.read_csv(csv_file)
        self.root_dir = root_dir
        self.transform = transform

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, idx):
        img_name = os.path.join(self.root_dir, self.labels.iloc[idx, 0])
        image = Image.open(img_name).convert('RGB')
        labels = torch.tensor(self.labels.iloc[idx, 1:].astype('float32'))

        if self.transform:
            image = self.transform(image)

        return image, labels

transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
])
dataset = MultiLabelDataset(csv_file='labels.csv', root_dir='images', transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True, num_workers=4)

模型定义

加载预训练的 EfficientNet-B0 模型并修改其用于多标签分类:

python 复制代码
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import torch.nn as nn
import torch

feature_extractor = AutoFeatureExtractor.from_pretrained("google/efficientnet-b0")
model = AutoModelForImageClassification.from_pretrained("google/efficientnet-b0")

num_labels = 5  # 根据你的标签数量修改
model.classifier = nn.Sequential(
    nn.Linear(model.classifier.in_features, num_labels),
    nn.Sigmoid()
)

# 设置量化配置
model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
model_fused = torch.quantization.fuse_modules(model, [['conv', 'bn', 'relu']])
model_prepared = torch.quantization.prepare_qat(model_fused)

多显卡训练

使用 DataParallel 进行多显卡训练:

python 复制代码
import torch.optim as optim

criterion = nn.BCELoss()
optimizer = optim.Adam(model_prepared.parameters(), lr=0.001)

num_epochs = 10
model_prepared = torch.nn.DataParallel(model_prepared)  # 包装模型

model_prepared.train()

for epoch in range(num_epochs):
    running_loss = 0.0
    for images, labels in dataloader:
        images, labels = images.cuda(), labels.cuda()  # 将数据移动到 GPU 上
        optimizer.zero_grad()
        
        outputs = model_prepared(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        running_loss += loss.item()

    print(f"Epoch {epoch+1}, Loss: {running_loss/len(dataloader)}")

print("Finished Training")

# 转换为量化模型
model_quantized = torch.quantization.convert(model_prepared.module)  # 取消 DataParallel 包装

模型保存与 ONNX 转换

将量化后的模型转换为 ONNX 格式:

python 复制代码
import torch.onnx

# 创建一个示例输入
example_input = torch.randn(1, 3, 224, 224).cuda()

# 导出为 ONNX 模型
torch.onnx.export(
    model_quantized,
    example_input,
    "efficientnet_b0_quantized.onnx",
    input_names=["input"],
    output_names=["output"],
    dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}},
    opset_version=12,
    do_constant_folding=True
)

验证 ONNX 模型

使用 ONNX Runtime 验证转换后的模型:

bash 复制代码
pip install onnxruntime
python 复制代码
import onnx
import onnxruntime as ort

# 加载 ONNX 模型
onnx_model = onnx.load("efficientnet_b0_quantized.onnx")
onnx.checker.check_model(onnx_model)

# 使用 ONNX Runtime 运行模型
ort_session = ort.InferenceSession("efficientnet_b0_quantized.onnx")

# 准备输入数据
def to_numpy(tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()

inputs = {ort_session.get_inputs()[0].name: to_numpy(example_input)}
outputs = ort_session.run(None, inputs)

print(outputs)

部署到移动设备

将 ONNX 模型文件 (efficientnet_b0_quantized.onnx) 部署到移动设备上,并使用适合的 ONNX 推理库(如 ONNX Runtime for Mobile)进行推理。在移动设备上,可以使用 ONNX Runtime for Mobile 或其他支持 ONNX 的库来加载和运行模型。

通过这些步骤,你可以在多显卡上进行量化感知训练,并将量化后的模型转换为 ONNX 格式,以便在移动设备上进行高效的推理。

相关推荐
你也渴望鸡哥的力量么36 分钟前
GeoSeg 框架解析
人工智能
唐华班竹38 分钟前
PoA 如何把 CodexField 从“创作平台”推向“内容经济网络”
人工智能·web3
渡我白衣1 小时前
深入理解 OverlayFS:用分层的方式重新组织 Linux 文件系统
android·java·linux·运维·服务器·开发语言·人工智能
IT_陈寒1 小时前
Vue 3.4 正式发布:5个不可错过的性能优化与Composition API新特性
前端·人工智能·后端
极客BIM工作室1 小时前
解密VQVAE中的Codebook
人工智能
DogDaoDao1 小时前
大语言模型四大核心技术架构深度解析
人工智能·语言模型·架构·大模型·transformer·循环神经网络·对抗网络
shayudiandian1 小时前
Transformer结构完全解读:从Attention到LLM
人工智能·深度学习·transformer
天天爱吃肉82182 小时前
新能源汽车动力系统在环(HIL)半实物仿真测试台架深度解析
人工智能·python·嵌入式硬件·汽车
xier_ran2 小时前
深度学习:深入理解 Softmax 激活函数
人工智能·深度学习