Prompt-Free Diffusion: Taking “Text” out of Text-to-Image Diffusion Models

  1. 问题引入
  • 在SD模型的基础之上,去掉text prompt,使用reference image作为生成图片语义的指导,optional structure image作为生成图片structure的指导来进行生成;
  • 使用SeeCoder来提取参考图片的embedding作为生成条件,且SeeCoder是可以重复使用的,可以直接集成到另外的T2I模型中;
  1. methods
  • 使用SeeCoder代替CLIP text embedding;
  • SeeCoder包含三个部分,Backbone Encoder, Decoder, and Query Transformer,其中Backbone Encoder使用SWIN-L提取多尺度特征,该部分参数是冻结的;之后decoder使用卷积来使得多尺度特征通道数相同,然后进行flatten+concat,得到的结果通过self attn + ffn;之后Query Transformer输出视觉embedding;
相关推荐
小殊小殊1 小时前
超越CNN:GCN如何重塑图像处理
图像处理·人工智能·深度学习
Kaydeon4 小时前
【AIGC】50倍加速!NVIDIA蒸馏算法rCM:分数正则化连续时间一致性模型的大规模扩散蒸馏
人工智能·pytorch·python·深度学习·计算机视觉·aigc
三年呀5 小时前
深度剖析Mixture of Experts(MoE)架构:从原理到实践的全面指南
人工智能·深度学习·架构·模型优化·大规模模型
墨利昂6 小时前
神经网络常用激活函数公式
人工智能·深度学习·神经网络
初级炼丹师(爱说实话版)8 小时前
PGLRNet论文笔记
人工智能·深度学习·计算机视觉
无风听海9 小时前
神经网络之理解梯度和方向导数
人工智能·深度学习·神经网络
zy_destiny12 小时前
【工业场景】用YOLOv8实现人员打电话识别
人工智能·python·深度学习·yolo·机器学习·计算机视觉·目标跟踪
zzZ656513 小时前
PyTorch 实现 MNIST 手写数字识别全流程
pytorch·深度学习
Mr.Winter`13 小时前
深度强化学习 | 基于SAC算法的动态避障(ROS C++仿真)
人工智能·深度学习·神经网络·机器人·自动驾驶·ros·具身智能