用kimi实现一键实体识别与关系抽取

实体识别与关系抽取是自然语言处理(NLP)中的两个重要任务,通常被视为知识图谱构建的基础技术。

实体识别(Named Entity Recognition, NER):

实体识别的目标是从文本中识别出具有特定意义的实体,并将其分类到预定义的类别中。这些实体通常包括人名、地名、机构名、时间表达式、货币值等。实体识别的过程可以分为两个主要步骤:实体边界识别和实体类别识别。在实际应用中,实体识别技术广泛应用于信息检索、智能问答、命名实体识别系统等领域。

关系抽取(Relation Extraction, RE):

关系抽取的目标是从文本中识别并提取实体之间的关系。这些关系可以是简单的二元关系,也可以是更复杂的多元关系。关系抽取任务通常需要在已知实体的基础上,通过分析文本语义和上下文信息,提取实体之间的关系。关系抽取的方法可以分为基于规则的方法、统计机器学习方法和深度学习方法

传统的实体识别与关系抽取需要编程实现,非常麻烦,而且效果也不是特别好。借助kimi这样的大模型AI工具,不仅简单就可以实现实体识别与关系抽取,还有更好的效果。

将文本文件上传,然后在kimi中输入提示词:

对文本内容进行命名实体识别(Named Entity Recognition, NER)和关系抽取(Relation Extraction, RE),将识别到的实体【元语智能】和其他实体之间的关系按照严谨的实体关系三元组的方式进行返回,规则是:实体1,关系名,实体2,输出格式为markdown表格

Kimi很快给出一个表格的回复:

实体1 关系名 实体2
元语智能 国内首个ChatGPT公司
元语智能 推出 ChatYuan
元语智能 联合创始人兼COO 朱雷
朱雷 提到 大模型发展趋势
元语智能 注册资本 100万元人民币
元语智能 持股50%的大股东 徐亮
徐亮 杭州敬天爱人管理咨询合伙企业的大股东
杭州敬天爱人管理咨询合伙企业 投资了 元语智能
西湖心辰(杭州)科技有限公司 元语智能的股东
元语智能 从事 软件和信息技术服务业
元语智能 推出 ChatYuan功能型对话大模型API
元语智能 基于 PromptCLUE模型

请注意,上述表格是根据提供的文本内容进行的命名实体识别和关系抽取,可能存在不同的解释方式。

相关推荐
Guheyunyi3 分钟前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
码码哈哈爱分享3 分钟前
[特殊字符] Whisper 模型介绍(OpenAI 语音识别系统)
人工智能·whisper·语音识别
郄堃Deep Traffic9 分钟前
机器学习+城市规划第十三期:XGBoost的地理加权改进,利用树模型实现更精准的地理加权回归
人工智能·机器学习·回归·城市规划
Lucky-Niu9 分钟前
解决transformers.adapters import AdapterConfig 报错的问题
人工智能·深度学习
FserSuN14 分钟前
Prompt工程学习之思维树(TOT)
人工智能·学习·prompt
字节跳动_离青1 小时前
智能的路径
人工智能
王上上1 小时前
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
论文阅读·人工智能·cnn
Channing Lewis1 小时前
如果科技足够发达,是否还需要维持自然系统(例如生物多样性)中那种‘冗余’和‘多样性’,还是可以只保留最优解?
大数据·人工智能·科技
禺垣1 小时前
区块链技术概述
大数据·人工智能·分布式·物联网·去中心化·区块链
IT科技那点事儿1 小时前
引领AI安全新时代 Accelerate 2025北亚巡展·北京站成功举办
人工智能·安全