用kimi实现一键实体识别与关系抽取

实体识别与关系抽取是自然语言处理(NLP)中的两个重要任务,通常被视为知识图谱构建的基础技术。

实体识别(Named Entity Recognition, NER):

实体识别的目标是从文本中识别出具有特定意义的实体,并将其分类到预定义的类别中。这些实体通常包括人名、地名、机构名、时间表达式、货币值等。实体识别的过程可以分为两个主要步骤:实体边界识别和实体类别识别。在实际应用中,实体识别技术广泛应用于信息检索、智能问答、命名实体识别系统等领域。

关系抽取(Relation Extraction, RE):

关系抽取的目标是从文本中识别并提取实体之间的关系。这些关系可以是简单的二元关系,也可以是更复杂的多元关系。关系抽取任务通常需要在已知实体的基础上,通过分析文本语义和上下文信息,提取实体之间的关系。关系抽取的方法可以分为基于规则的方法、统计机器学习方法和深度学习方法

传统的实体识别与关系抽取需要编程实现,非常麻烦,而且效果也不是特别好。借助kimi这样的大模型AI工具,不仅简单就可以实现实体识别与关系抽取,还有更好的效果。

将文本文件上传,然后在kimi中输入提示词:

对文本内容进行命名实体识别(Named Entity Recognition, NER)和关系抽取(Relation Extraction, RE),将识别到的实体【元语智能】和其他实体之间的关系按照严谨的实体关系三元组的方式进行返回,规则是:实体1,关系名,实体2,输出格式为markdown表格

Kimi很快给出一个表格的回复:

实体1 关系名 实体2
元语智能 国内首个ChatGPT公司
元语智能 推出 ChatYuan
元语智能 联合创始人兼COO 朱雷
朱雷 提到 大模型发展趋势
元语智能 注册资本 100万元人民币
元语智能 持股50%的大股东 徐亮
徐亮 杭州敬天爱人管理咨询合伙企业的大股东
杭州敬天爱人管理咨询合伙企业 投资了 元语智能
西湖心辰(杭州)科技有限公司 元语智能的股东
元语智能 从事 软件和信息技术服务业
元语智能 推出 ChatYuan功能型对话大模型API
元语智能 基于 PromptCLUE模型

请注意,上述表格是根据提供的文本内容进行的命名实体识别和关系抽取,可能存在不同的解释方式。

相关推荐
Elastic 中国社区官方博客5 分钟前
使用 Elastic AI Assistant for Search 和 Azure OpenAI 实现从 0 到 60 的转变
大数据·人工智能·elasticsearch·microsoft·搜索引擎·ai·azure
江_小_白1 小时前
自动驾驶之激光雷达
人工智能·机器学习·自动驾驶
yusaisai大鱼2 小时前
TensorFlow如何调用GPU?
人工智能·tensorflow
珠海新立电子科技有限公司5 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董5 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦5 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw6 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐6 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
如若1237 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr7 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络