用kimi实现一键实体识别与关系抽取

实体识别与关系抽取是自然语言处理(NLP)中的两个重要任务,通常被视为知识图谱构建的基础技术。

实体识别(Named Entity Recognition, NER):

实体识别的目标是从文本中识别出具有特定意义的实体,并将其分类到预定义的类别中。这些实体通常包括人名、地名、机构名、时间表达式、货币值等。实体识别的过程可以分为两个主要步骤:实体边界识别和实体类别识别。在实际应用中,实体识别技术广泛应用于信息检索、智能问答、命名实体识别系统等领域。

关系抽取(Relation Extraction, RE):

关系抽取的目标是从文本中识别并提取实体之间的关系。这些关系可以是简单的二元关系,也可以是更复杂的多元关系。关系抽取任务通常需要在已知实体的基础上,通过分析文本语义和上下文信息,提取实体之间的关系。关系抽取的方法可以分为基于规则的方法、统计机器学习方法和深度学习方法

传统的实体识别与关系抽取需要编程实现,非常麻烦,而且效果也不是特别好。借助kimi这样的大模型AI工具,不仅简单就可以实现实体识别与关系抽取,还有更好的效果。

将文本文件上传,然后在kimi中输入提示词:

对文本内容进行命名实体识别(Named Entity Recognition, NER)和关系抽取(Relation Extraction, RE),将识别到的实体【元语智能】和其他实体之间的关系按照严谨的实体关系三元组的方式进行返回,规则是:实体1,关系名,实体2,输出格式为markdown表格

Kimi很快给出一个表格的回复:

实体1 关系名 实体2
元语智能 国内首个ChatGPT公司
元语智能 推出 ChatYuan
元语智能 联合创始人兼COO 朱雷
朱雷 提到 大模型发展趋势
元语智能 注册资本 100万元人民币
元语智能 持股50%的大股东 徐亮
徐亮 杭州敬天爱人管理咨询合伙企业的大股东
杭州敬天爱人管理咨询合伙企业 投资了 元语智能
西湖心辰(杭州)科技有限公司 元语智能的股东
元语智能 从事 软件和信息技术服务业
元语智能 推出 ChatYuan功能型对话大模型API
元语智能 基于 PromptCLUE模型

请注意,上述表格是根据提供的文本内容进行的命名实体识别和关系抽取,可能存在不同的解释方式。

相关推荐
没有梦想的咸鱼185-1037-166313 分钟前
AI大模型支持下的:ArcGIS数据处理、空间分析、可视化及多案例综合应用
人工智能·arcgis·chatgpt·数据分析
青春不败 177-3266-052013 分钟前
AI+ArcGIS:数据处理、空间分析、可视化前沿技术应
人工智能·arcgis·gis·生态学·可视化·数据处理
新智元27 分钟前
老黄亲自站台,英伟达编程神器!Cursor 2.0 自研模型狂飙 4 倍
人工智能·openai
新智元36 分钟前
AI是「天才」还是「话术大师」?Anthropic颠覆性实验,终揭答案!
人工智能·openai
TG:@yunlaoda360 云老大38 分钟前
2025云栖大会举行:阿里云旗舰模型Qwen3-Max、下一代架构Qwen3-Next重磅发布,加速构建“云智一体”AI超级计算机
人工智能·阿里云·架构
华为云开发者联盟40 分钟前
【新特性】 版本速递 | 华为云Versatile智能体平台 新增特性介绍(2025年10月发布)
人工智能·华为云开发者联盟·ai agent·mcp·华为云versatile
Francek Chen1 小时前
【自然语言处理】预训练02:近似训练
人工智能·pytorch·深度学习·自然语言处理
云和数据.ChenGuang1 小时前
tensorflow的广播机制
人工智能·python·tensorflow
J_Xiong01171 小时前
【VLNs篇】11:Dynam3D: 动态分层3D令牌赋能视觉语言导航中的VLM
人工智能·算法·3d
极客BIM工作室1 小时前
AI 图像生成技术发展时间脉络:从 GAN 到多模态大模型的知名模型概略解析
人工智能·神经网络·生成对抗网络