用kimi实现一键实体识别与关系抽取

实体识别与关系抽取是自然语言处理(NLP)中的两个重要任务,通常被视为知识图谱构建的基础技术。

实体识别(Named Entity Recognition, NER):

实体识别的目标是从文本中识别出具有特定意义的实体,并将其分类到预定义的类别中。这些实体通常包括人名、地名、机构名、时间表达式、货币值等。实体识别的过程可以分为两个主要步骤:实体边界识别和实体类别识别。在实际应用中,实体识别技术广泛应用于信息检索、智能问答、命名实体识别系统等领域。

关系抽取(Relation Extraction, RE):

关系抽取的目标是从文本中识别并提取实体之间的关系。这些关系可以是简单的二元关系,也可以是更复杂的多元关系。关系抽取任务通常需要在已知实体的基础上,通过分析文本语义和上下文信息,提取实体之间的关系。关系抽取的方法可以分为基于规则的方法、统计机器学习方法和深度学习方法

传统的实体识别与关系抽取需要编程实现,非常麻烦,而且效果也不是特别好。借助kimi这样的大模型AI工具,不仅简单就可以实现实体识别与关系抽取,还有更好的效果。

将文本文件上传,然后在kimi中输入提示词:

对文本内容进行命名实体识别(Named Entity Recognition, NER)和关系抽取(Relation Extraction, RE),将识别到的实体【元语智能】和其他实体之间的关系按照严谨的实体关系三元组的方式进行返回,规则是:实体1,关系名,实体2,输出格式为markdown表格

Kimi很快给出一个表格的回复:

实体1 关系名 实体2
元语智能 国内首个ChatGPT公司
元语智能 推出 ChatYuan
元语智能 联合创始人兼COO 朱雷
朱雷 提到 大模型发展趋势
元语智能 注册资本 100万元人民币
元语智能 持股50%的大股东 徐亮
徐亮 杭州敬天爱人管理咨询合伙企业的大股东
杭州敬天爱人管理咨询合伙企业 投资了 元语智能
西湖心辰(杭州)科技有限公司 元语智能的股东
元语智能 从事 软件和信息技术服务业
元语智能 推出 ChatYuan功能型对话大模型API
元语智能 基于 PromptCLUE模型

请注意,上述表格是根据提供的文本内容进行的命名实体识别和关系抽取,可能存在不同的解释方式。

相关推荐
Funny_AI_LAB18 分钟前
OpenAI DevDay 2025:ChatGPT 进化为平台,开启 AI 应用新纪元
人工智能·ai·语言模型·chatgpt
深瞳智检31 分钟前
YOLO算法原理详解系列 第002期-YOLOv2 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
深眸财经1 小时前
机器人再冲港交所,优艾智合能否破行业困局?
人工智能·机器人
小宁爱Python1 小时前
从零搭建 RAG 智能问答系统1:基于 LlamaIndex 与 Chainlit实现最简单的聊天助手
人工智能·后端·python
新知图书2 小时前
Encoder-Decoder架构的模型简介
人工智能·架构·ai agent·智能体·大模型应用开发·大模型应用
大模型真好玩2 小时前
低代码Agent开发框架使用指南(一)—主流开发框架对比介绍
人工智能·低代码·agent
tzc_fly3 小时前
AI作为操作系统已经不能阻挡了,尽管它还没来
人工智能·chatgpt
PKNLP3 小时前
深度学习之神经网络1(Neural Network)
人工智能·深度学习·神经网络
文火冰糖的硅基工坊4 小时前
《投资-99》价值投资者的认知升级与交易规则重构 - 什么是周期性股票?有哪些周期性股票?不同周期性股票的周期多少?周期性股票的买入和卖出的特点?
大数据·人工智能·重构·架构·投资·投机
Elastic 中国社区官方博客4 小时前
Elasticsearch:使用推理端点及语义搜索演示
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索