用kimi实现一键实体识别与关系抽取

实体识别与关系抽取是自然语言处理(NLP)中的两个重要任务,通常被视为知识图谱构建的基础技术。

实体识别(Named Entity Recognition, NER):

实体识别的目标是从文本中识别出具有特定意义的实体,并将其分类到预定义的类别中。这些实体通常包括人名、地名、机构名、时间表达式、货币值等。实体识别的过程可以分为两个主要步骤:实体边界识别和实体类别识别。在实际应用中,实体识别技术广泛应用于信息检索、智能问答、命名实体识别系统等领域。

关系抽取(Relation Extraction, RE):

关系抽取的目标是从文本中识别并提取实体之间的关系。这些关系可以是简单的二元关系,也可以是更复杂的多元关系。关系抽取任务通常需要在已知实体的基础上,通过分析文本语义和上下文信息,提取实体之间的关系。关系抽取的方法可以分为基于规则的方法、统计机器学习方法和深度学习方法

传统的实体识别与关系抽取需要编程实现,非常麻烦,而且效果也不是特别好。借助kimi这样的大模型AI工具,不仅简单就可以实现实体识别与关系抽取,还有更好的效果。

将文本文件上传,然后在kimi中输入提示词:

对文本内容进行命名实体识别(Named Entity Recognition, NER)和关系抽取(Relation Extraction, RE),将识别到的实体【元语智能】和其他实体之间的关系按照严谨的实体关系三元组的方式进行返回,规则是:实体1,关系名,实体2,输出格式为markdown表格

Kimi很快给出一个表格的回复:

实体1 关系名 实体2
元语智能 国内首个ChatGPT公司
元语智能 推出 ChatYuan
元语智能 联合创始人兼COO 朱雷
朱雷 提到 大模型发展趋势
元语智能 注册资本 100万元人民币
元语智能 持股50%的大股东 徐亮
徐亮 杭州敬天爱人管理咨询合伙企业的大股东
杭州敬天爱人管理咨询合伙企业 投资了 元语智能
西湖心辰(杭州)科技有限公司 元语智能的股东
元语智能 从事 软件和信息技术服务业
元语智能 推出 ChatYuan功能型对话大模型API
元语智能 基于 PromptCLUE模型

请注意,上述表格是根据提供的文本内容进行的命名实体识别和关系抽取,可能存在不同的解释方式。

相关推荐
杨过过儿几秒前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫9 分钟前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手18 分钟前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记30 分钟前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元1 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术1 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
超龄超能程序猿2 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉
要努力啊啊啊2 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
好开心啊没烦恼2 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy