LLMs之gptpdf:gptpdf的简介、安装和使用方法、案例应用之详细攻略

LLMs之gptpdf:gptpdf的简介、安装和使用方法、案例应用之详细攻略

目录

gptpdf的简介

1、处理流程

[第一步,使用 PyMuPDF 库,对 PDF 进行解析出所有非文本区域,并做好标记,比如:](#第一步,使用 PyMuPDF 库,对 PDF 进行解析出所有非文本区域,并做好标记,比如:)

[第二步,使用视觉大模型(如 GPT-4o)进行解析,得到 markdown 文件。](#第二步,使用视觉大模型(如 GPT-4o)进行解析,得到 markdown 文件。)

gptpdf的安装和使用方法

1、安装

2、使用

解读test.py代码

3、API

gptpdf的案例应用


gptpdf的简介

gptpdf是一款主要使用视觉大语言模型(如 GPT-4o)将 PDF 解析为 markdown。我们的方法非常简单(只有293行代码),但几乎可以完美地解析排版、数学公式、表格、图片、图表等。每页平均价格仅需0.013 美元,我们使用 GeneralAgent lib 与 OpenAI API 交互。pdfgpt-ui 是一个基于 gptpdf 的可视化工具。

Github地址GitHub - CosmosShadow/gptpdf: Using GPT to parse PDF

1、 处理流程

第一步,使用 PyMuPDF 库,对 PDF 进行解析出所有非文本区域,并做好标记,比如:

第二步,使用视觉大模型(如 GPT-4o)进行解析,得到 markdown 文件。

gptpdf的安装和使用方法

1、 安装

复制代码
pip install gptpdf

2、 使用

python 复制代码
from gptpdf import parse_pdf

api_key = 'Your OpenAI API Key'
content, image_paths = parse_pdf(pdf_path, api_key=api_key)
print(content)

更多内容请见 test/test.py

地址:https://github.com/CosmosShadow/gptpdf/blob/main/test/test.py

解读test.py代码

python 复制代码
import os

# 从 .env 文件中加载环境变量
import dotenv
dotenv.load_dotenv()

def test_use_api_key():
    from gptpdf import parse_pdf
    pdf_path = '../examples/attention_is_all_you_need.pdf'
    output_dir = '../examples/attention_is_all_you_need/'
    # 从环境变量中获取 OPENAI_API_KEY 和 OPENAI_API_BASE
    api_key = os.getenv('OPENAI_API_KEY')
    base_url = os.getenv('OPENAI_API_BASE')
    # 手动提供 OPENAI_API_KEY 和 OPENAI_API_BASE
    content, image_paths = parse_pdf(pdf_path, output_dir=output_dir, api_key=api_key, base_url=base_url, model='gpt-4o', gpt_worker=6)
    # 输出解析后的内容和图像路径
    print(content)
    print(image_paths)
    # 同时会生成 output_dir/output.md 文件

def test_use_env():
    from gptpdf import parse_pdf
    pdf_path = '../examples/attention_is_all_you_need.pdf'
    output_dir = '../examples/attention_is_all_you_need/'
    # 使用环境变量中的 OPENAI_API_KEY 和 OPENAI_API_BASE
    content, image_paths = parse_pdf(pdf_path, output_dir=output_dir, model='gpt-4o', verbose=True)
    # 输出解析后的内容和图像路径
    print(content)
    print(image_paths)
    # 同时会生成 output_dir/output.md 文件

def test_azure():
    from gptpdf import parse_pdf
    # Azure API Key
    api_key = '8ef0b4df45e444079cd5a4xxxxx' 
    # Azure API 基础 URL
    base_url = 'https://xxx.openai.azure.com/' 
    # Azure 部署的模型 ID 名称(不是 OpenAI 模型名称)
    model = 'azure_xxxx'

    pdf_path = '../examples/attention_is_all_you_need.pdf'
    output_dir = '../examples/attention_is_all_you_need/'
    # 使用提供的 Azure API Key 和基础 URL
    content, image_paths = parse_pdf(pdf_path, output_dir=output_dir, api_key=api_key, base_url=base_url, model=model, verbose=True)
    # 输出解析后的内容和图像路径
    print(content)
    print(image_paths)

if __name__ == '__main__':
    # 取消注释以运行特定的测试函数
    # test_use_api_key()
    # test_use_env()
    test_azure()

3、API

parse_pdf (pdf_path, output_dir='./', api_key=None, base_url=None, model='gpt-4o', verbose=False)

将 pdf 文件解析为 markdown 文件,并返回 markdown 内容和所有图片路径列表。

  • pdf_path:pdf 文件路径

  • output_dir:输出目录。存储所有图片和 markdown 文件

  • api_key:OpenAI API 密钥(可选)。如果未提供,则使用 OPENAI_API_KEY 环境变量。

  • base_url:OpenAI 基本 URL。(可选)。如果未提供,则使用 OPENAI_BASE_URL 环境变量。

  • model :OpenAI API格式的多模态大模型,默认为 "gpt-4o"。 如果您需要使用其他模型,例如 qwen-vl-max (尚未测试)

    GLM-4V, 可以通过修改环境变量 OPENAI_BASE_URL 或 指定API参数 base_url 来使用。 (已经测试)

    您也可以通过将 base_url 指定为 https://xxxx.openai.azure.com/ 来使用 Azure OpenAI,api_key 是 Azure API 密钥,模型类似于 'azure_xxxx',其中 xxxx 是部署的模型名称(不是 openai 模型名称)(已经测试)

  • verbose:详细模式

  • gpt_worker: gpt解析工作线程数,默认为1. 如果您的机器性能较好,可以适当调高,以提高解析速度。

gptpdf的案例应用

持续更新中......

相关推荐
RuizhiHe5 小时前
从零开始实现大语言模型(十六):加载开源大语言模型参数
人工智能·chatgpt·llm·大语言模型·deepseek·从零开始实现大语言模型
RuizhiHe9 小时前
从零开始实现大语言模型(十五):并行计算与分布式机器学习
人工智能·chatgpt·llm·大语言模型·deepseek·从零开始实现大语言模型
有梦想的攻城狮2 天前
大语言模型与多模态模型比较
人工智能·语言模型·自然语言处理·llm·大语言模型
亚里随笔2 天前
AlphaEvolve:LLM驱动的算法进化革命与科学发现新范式
人工智能·算法·llm·大语言模型
小白跃升坊5 天前
【保姆级教程】:开源 Qwen3 本地化部署实操详细教程
大语言模型·it运维·linux操作系统·max kb
不是吧这都有重名6 天前
[论文阅读]Deeply-Supervised Nets
论文阅读·人工智能·算法·大语言模型
亚里随笔9 天前
StreamRL:弹性、可扩展、异构的RLHF架构
人工智能·架构·大语言模型·rlhf·推理加速
deephub17 天前
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
人工智能·pytorch·深度学习·缓存·大语言模型
苹果二19 天前
【学习资源】知识图谱与大语言模型融合
知识图谱·大语言模型
deephub19 天前
SecMulti-RAG:兼顾数据安全与智能检索的多源RAG框架,为企业构建不泄密的智能搜索引擎
人工智能·深度学习·大语言模型·rag·智能检索