002-基于Sklearn的机器学习入门:基本概念

本节将继续介绍与机器学习有关的一些基本概念,包括机器学习的分类,性能指标等。同样,如果你对本节内容很熟悉,可直接跳过。

2.1 机器学习概述

2.1.1 什么是机器学习

常见的监督学习方法

2.1.2 机器学习的分类

机器学习一般包括监督学习,无监督学习,强化学习,半监督学习和主动学习,接下来,我们主要针对每一种学习方法进行解释。

  • 监督学习:简单的来说,监督学习,就是我们人为的给我们的数据集添加一个标注,使得我们的机器学习模型可以借助外力从我们的数据中去学习。标注数据表示我们的输入与输出的对应关系,我们建立的模型,对给定的新数据集,产生相应的输出,监督学习的本质就是学习输入到输出的映射规律。
  • 无监督学习:无监督学习是指从无标注的数据集中进行学习预测的机器学习,它和监督学习刚好相反,监督学习需要我们人为的添加标注,而无监督学习不需要我们人为的添加标注,模型会自动从给定的数据集中学习,然后对我们给出的新的数据集进行预测判断,无监督学习本质是学习数据中统计规律和潜在的结构。
  • 强化学习:强化学习是指智能系统在与环境的连续互动中学习最优行为策略的机器学习问题。
  • 半监督学习:半监督学习是指利用标注数据和未标注数据学习预测模型的机器学习问题,通过有少量的标注数据,大量的未标注数据,半监督学习的目的是在利用未标注数据中的信息,辅助标注数据进行监督的学习以较低的成本达到较好的学习效果。
  • 主动学习:主动学习是指机器不断主动给出实例让教师进行标注,然后利用标注数据学习预测模型的机器学习问题,通常监督学习使用给定的标注数据集,往往是随机得到的,可以看做是被动学习,主动学习的目标是找出对学习有帮助的实例让教师标注,以较小的标注代价,达到较好的学习效果。

2.3 性能度量

机器学习概论_假设空间定义为决策函数的集合-CSDN博客

相关推荐
正脉科工 CAE仿真16 分钟前
抗震计算 | 基于随机振动理论的结构地震响应计算
人工智能
看到我,请让我去学习18 分钟前
OpenCV编程- (图像基础处理:噪声、滤波、直方图与边缘检测)
c语言·c++·人工智能·opencv·计算机视觉
码字的字节20 分钟前
深度解析Computer-Using Agent:AI如何像人类一样操作计算机
人工智能·computer-using·ai操作计算机·cua
冬天给予的预感1 小时前
DAY 54 Inception网络及其思考
网络·python·深度学习
说私域1 小时前
互联网生态下赢家群体的崛起与“开源AI智能名片链动2+1模式S2B2C商城小程序“的赋能效应
人工智能·小程序·开源
钢铁男儿1 小时前
PyQt5高级界而控件(容器:装载更多的控件QDockWidget)
数据库·python·qt
董厂长5 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
亿牛云爬虫专家5 小时前
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
分布式·python·架构·kubernetes·爬虫代理·监测·采集
G皮T8 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼8 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态