002-基于Sklearn的机器学习入门:基本概念

本节将继续介绍与机器学习有关的一些基本概念,包括机器学习的分类,性能指标等。同样,如果你对本节内容很熟悉,可直接跳过。

2.1 机器学习概述

2.1.1 什么是机器学习

常见的监督学习方法

2.1.2 机器学习的分类

机器学习一般包括监督学习,无监督学习,强化学习,半监督学习和主动学习,接下来,我们主要针对每一种学习方法进行解释。

  • 监督学习:简单的来说,监督学习,就是我们人为的给我们的数据集添加一个标注,使得我们的机器学习模型可以借助外力从我们的数据中去学习。标注数据表示我们的输入与输出的对应关系,我们建立的模型,对给定的新数据集,产生相应的输出,监督学习的本质就是学习输入到输出的映射规律。
  • 无监督学习:无监督学习是指从无标注的数据集中进行学习预测的机器学习,它和监督学习刚好相反,监督学习需要我们人为的添加标注,而无监督学习不需要我们人为的添加标注,模型会自动从给定的数据集中学习,然后对我们给出的新的数据集进行预测判断,无监督学习本质是学习数据中统计规律和潜在的结构。
  • 强化学习:强化学习是指智能系统在与环境的连续互动中学习最优行为策略的机器学习问题。
  • 半监督学习:半监督学习是指利用标注数据和未标注数据学习预测模型的机器学习问题,通过有少量的标注数据,大量的未标注数据,半监督学习的目的是在利用未标注数据中的信息,辅助标注数据进行监督的学习以较低的成本达到较好的学习效果。
  • 主动学习:主动学习是指机器不断主动给出实例让教师进行标注,然后利用标注数据学习预测模型的机器学习问题,通常监督学习使用给定的标注数据集,往往是随机得到的,可以看做是被动学习,主动学习的目标是找出对学习有帮助的实例让教师标注,以较小的标注代价,达到较好的学习效果。

2.3 性能度量

机器学习概论_假设空间定义为决策函数的集合-CSDN博客

相关推荐
love530love7 分钟前
Windows避坑部署CosyVoice多语言大语言模型
人工智能·windows·python·语言模型·自然语言处理·pycharm
985小水博一枚呀42 分钟前
【AI大模型学习路线】第二阶段之RAG基础与架构——第七章(【项目实战】基于RAG的PDF文档助手)技术方案与架构设计?
人工智能·学习·语言模型·架构·大模型
白熊1881 小时前
【图像生成大模型】Wan2.1:下一代开源大规模视频生成模型
人工智能·计算机视觉·开源·文生图·音视频
weixin_514548891 小时前
一种开源的高斯泼溅实现库——gsplat: An Open-Source Library for Gaussian Splatting
人工智能·计算机视觉·3d
掘金-我是哪吒1 小时前
分布式微服务系统架构第132集:Python大模型,fastapi项目-Jeskson文档-微服务分布式系统架构
分布式·python·微服务·架构·系统架构
四口鲸鱼爱吃盐1 小时前
BMVC2023 | 多样化高层特征以提升对抗迁移性
人工智能·深度学习·cnn·vit·对抗攻击·迁移攻击
Echo``2 小时前
3:OpenCV—视频播放
图像处理·人工智能·opencv·算法·机器学习·视觉检测·音视频
Douglassssssss2 小时前
【深度学习】使用块的网络(VGG)
网络·人工智能·深度学习
okok__TXF2 小时前
SpringBoot3+AI
java·人工智能·spring
SAP工博科技2 小时前
如何提升新加坡SAP实施成功率?解答中企出海的“税务合规密码” | 工博科技SAP金牌服务商
人工智能·科技·制造