Pytorch中分类回归常用的损失和优化器

Pytorch中分类回归常用的损失和优化器

在机器学习和深度学习中,分类任务和预测任务(回归任务)有不同的常用损失函数和优化器。下面将详细介绍这些常用的损失函数和优化器。

分类任务

1. 损失函数

  • 交叉熵损失(Cross-Entropy Loss)

    • 适用场景:多分类任务。
    • 实现nn.CrossEntropyLoss() 在 PyTorch 中自动计算 softmax 和交叉熵。
    python 复制代码
    criterion = nn.CrossEntropyLoss()
  • 二元交叉熵损失(Binary Cross-Entropy Loss)

    • 适用场景:二分类任务。
    • 实现nn.BCELoss() 需要配合 sigmoid 激活函数,nn.BCEWithLogitsLoss() 将 sigmoid 和二元交叉熵计算合二为一。
    python 复制代码
    criterion = nn.BCEWithLogitsLoss()
  • 稀疏分类交叉熵损失(Sparse Categorical Cross-Entropy Loss)

    • 适用场景:多分类任务,标签为整数索引而非 one-hot 编码。
    • 实现 :在 TensorFlow 中通常使用 tf.keras.losses.SparseCategoricalCrossentropy()
    python 复制代码
    from tensorflow.keras.losses import SparseCategoricalCrossentropy
    criterion = SparseCategoricalCrossentropy(from_logits=True)

2. 优化器

  • 随机梯度下降(SGD)

    • 优点:简单易用,适用于一般的优化问题。
    • 实现optim.SGD()
    python 复制代码
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
  • 自适应矩估计(Adam)

    • 优点:适应性学习率,通常能快速收敛,适用于大多数任务。
    • 实现optim.Adam()
    python 复制代码
    optimizer = optim.Adam(model.parameters(), lr=0.001)
  • 均方根传播(RMSprop)

    • 优点:适用于处理非平稳目标问题。
    • 实现optim.RMSprop()
    python 复制代码
    optimizer = optim.RMSprop(model.parameters(), lr=0.001)

回归任务

1. 损失函数

  • 均方误差(Mean Squared Error, MSE)

    • 适用场景:回归任务。
    • 实现nn.MSELoss()
    python 复制代码
    criterion = nn.MSELoss()
  • 平均绝对误差(Mean Absolute Error, MAE)

    • 适用场景:回归任务。
    • 实现:在 PyTorch 中通常需要自定义实现。
    python 复制代码
    class MAELoss(nn.Module):
        def __init__(self):
            super(MAELoss, self).__init__()
    
        def forward(self, output, target):
            return torch.mean(torch.abs(output - target))
            
    criterion = MAELoss()
  • Huber 损失

    • 优点:对异常值更鲁棒,是 MSE 和 MAE 的折中。
    • 实现nn.SmoothL1Loss()
    python 复制代码
    criterion = nn.SmoothL1Loss()

2. 优化器

  • 随机梯度下降(SGD)

    • 优点:简单易用,适用于一般的优化问题。
    • 实现optim.SGD()
    python 复制代码
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
  • 自适应矩估计(Adam)

    • 优点:适应性学习率,通常能快速收敛,适用于大多数任务。
    • 实现optim.Adam()
    python 复制代码
    optimizer = optim.Adam(model.parameters(), lr=0.001)
  • 均方根传播(RMSprop)

    • 优点:适用于处理非平稳目标问题。
    • 实现optim.RMSprop()
    python 复制代码
    optimizer = optim.RMSprop(model.parameters(), lr=0.001)

总结

  • 分类任务通常使用交叉熵损失(针对多分类和二分类任务),优化器可以选择 SGD、Adam 或 RMSprop。
  • 回归任务常用均方误差(MSE)和平均绝对误差(MAE),优化器也可以选择 SGD、Adam 或 RMSprop。

根据任务的具体需求和模型的表现,可以尝试不同的损失函数和优化器,选择最合适的组合。

相关推荐
KG_LLM图谱增强大模型16 分钟前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd1 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白1 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_802 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20202 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能
Master_oid3 小时前
机器学习29:增强式学习(Deep Reinforcement Learning)④
人工智能·学习·机器学习
ballball~~3 小时前
拉普拉斯金字塔
算法·机器学习
Cemtery1163 小时前
Day26 常见的降维算法
人工智能·python·算法·机器学习
zxsz_com_cn3 小时前
预测性维护在智能制造设备上的实际应用
人工智能
一条闲鱼_mytube3 小时前
智能体设计模式(三)多智能体协作-记忆管理-学习与适应
人工智能·学习·设计模式