Pytorch中分类回归常用的损失和优化器

Pytorch中分类回归常用的损失和优化器

在机器学习和深度学习中,分类任务和预测任务(回归任务)有不同的常用损失函数和优化器。下面将详细介绍这些常用的损失函数和优化器。

分类任务

1. 损失函数

  • 交叉熵损失(Cross-Entropy Loss)

    • 适用场景:多分类任务。
    • 实现nn.CrossEntropyLoss() 在 PyTorch 中自动计算 softmax 和交叉熵。
    python 复制代码
    criterion = nn.CrossEntropyLoss()
  • 二元交叉熵损失(Binary Cross-Entropy Loss)

    • 适用场景:二分类任务。
    • 实现nn.BCELoss() 需要配合 sigmoid 激活函数,nn.BCEWithLogitsLoss() 将 sigmoid 和二元交叉熵计算合二为一。
    python 复制代码
    criterion = nn.BCEWithLogitsLoss()
  • 稀疏分类交叉熵损失(Sparse Categorical Cross-Entropy Loss)

    • 适用场景:多分类任务,标签为整数索引而非 one-hot 编码。
    • 实现 :在 TensorFlow 中通常使用 tf.keras.losses.SparseCategoricalCrossentropy()
    python 复制代码
    from tensorflow.keras.losses import SparseCategoricalCrossentropy
    criterion = SparseCategoricalCrossentropy(from_logits=True)

2. 优化器

  • 随机梯度下降(SGD)

    • 优点:简单易用,适用于一般的优化问题。
    • 实现optim.SGD()
    python 复制代码
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
  • 自适应矩估计(Adam)

    • 优点:适应性学习率,通常能快速收敛,适用于大多数任务。
    • 实现optim.Adam()
    python 复制代码
    optimizer = optim.Adam(model.parameters(), lr=0.001)
  • 均方根传播(RMSprop)

    • 优点:适用于处理非平稳目标问题。
    • 实现optim.RMSprop()
    python 复制代码
    optimizer = optim.RMSprop(model.parameters(), lr=0.001)

回归任务

1. 损失函数

  • 均方误差(Mean Squared Error, MSE)

    • 适用场景:回归任务。
    • 实现nn.MSELoss()
    python 复制代码
    criterion = nn.MSELoss()
  • 平均绝对误差(Mean Absolute Error, MAE)

    • 适用场景:回归任务。
    • 实现:在 PyTorch 中通常需要自定义实现。
    python 复制代码
    class MAELoss(nn.Module):
        def __init__(self):
            super(MAELoss, self).__init__()
    
        def forward(self, output, target):
            return torch.mean(torch.abs(output - target))
            
    criterion = MAELoss()
  • Huber 损失

    • 优点:对异常值更鲁棒,是 MSE 和 MAE 的折中。
    • 实现nn.SmoothL1Loss()
    python 复制代码
    criterion = nn.SmoothL1Loss()

2. 优化器

  • 随机梯度下降(SGD)

    • 优点:简单易用,适用于一般的优化问题。
    • 实现optim.SGD()
    python 复制代码
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
  • 自适应矩估计(Adam)

    • 优点:适应性学习率,通常能快速收敛,适用于大多数任务。
    • 实现optim.Adam()
    python 复制代码
    optimizer = optim.Adam(model.parameters(), lr=0.001)
  • 均方根传播(RMSprop)

    • 优点:适用于处理非平稳目标问题。
    • 实现optim.RMSprop()
    python 复制代码
    optimizer = optim.RMSprop(model.parameters(), lr=0.001)

总结

  • 分类任务通常使用交叉熵损失(针对多分类和二分类任务),优化器可以选择 SGD、Adam 或 RMSprop。
  • 回归任务常用均方误差(MSE)和平均绝对误差(MAE),优化器也可以选择 SGD、Adam 或 RMSprop。

根据任务的具体需求和模型的表现,可以尝试不同的损失函数和优化器,选择最合适的组合。

相关推荐
吾在学习路4 分钟前
【CVPR 2018最佳论文】Squeeze-and-Excitation Networks
人工智能·深度学习·神经网络·机器学习
小黄人软件7 分钟前
豆包AI手机是未来所有带屏设备的方向,包括POS机。豆包AI手机需要很强的本地算力吗?不需要。
人工智能·智能手机
Salt_07288 分钟前
DAY 47 Tensorboard的使用介绍
人工智能·python·深度学习·机器学习
木卫二号Coding13 分钟前
第七十篇-ComfyUI+V100-32G+运行SD3.5-文生图
人工智能
Salt_072820 分钟前
DAY 40 早停策略和模型权重的保存
人工智能·python·算法·机器学习
码农小白猿32 分钟前
IACheck优化电梯定期检验报告:自动化术语审核提升合规性与效率
大数据·运维·人工智能·ai·自动化·iacheck
点云SLAM34 分钟前
Absence 英文单词学习
人工智能·英文单词学习·雅思备考·absence·缺席 / 不在场·缺乏 / 缺失
酌沧1 小时前
读懂深度学习中的梯度爆炸和梯度消失
人工智能·深度学习
DARLING Zero two♡1 小时前
接入 AI Ping 限免接口,让 GLM-4.7 与 MiniMax-M2.1 成为你的免费 C++ 审计专家
开发语言·c++·人工智能