利用GPT 将 matlab 内置 bwlookup 函数转C

最近业务需要将 matlab中bwlookup 的转C

这个函数没有现成的m文件参考,内置已经打成库了,所以没有参考源代码

但是它的解释还是很清楚的,可以根据这个来写

Nonlinear filtering using lookup tables - MATLAB bwlookup - MathWorks 中国

A = bwlookup(B,lut) performs a 2-by-2 or 3-by-3 nonlinear neighborhood filtering operation on binary image BW. The neighborhood processing determines an integer index value used to access values in lookup table lut. The fetched lut value becomes the pixel value in output image A at the targeted position.

它说的很清楚,BW是二值图像矩阵,lut是一个512的查找表,对3*3邻居矩阵进行一些滤波(权重和)得到最后结果

用GPT生成一个

#include <stdio.h>
#include <stdlib.h>

#define WIDTH 3
#define HEIGHT 3

// 将 3x3 邻域编码为一个 9 位二进制数
int encodeNeighborhood(int neighborhood[3][3]) {
    int code = 0;
    for (int i = 0; i < 3; ++i) {
        for (int j = 0; j < 3; ++j) {
            code = (code << 1) | neighborhood[i][j];
        }
    }
    return code;
}

// 应用查找表进行形态学操作
void bwlookup(int input[HEIGHT][WIDTH], int output[HEIGHT][WIDTH], int lut[512]) {
    int neighborhood[3][3];
    
    // 处理内部像素
    for (int y = 1; y < HEIGHT - 1; ++y) {
        for (int x = 1; x < WIDTH - 1; ++x) {
            // 提取 3x3 邻域
            for (int i = -1; i <= 1; ++i) {
                for (int j = -1; j <= 1; ++j) {
                    neighborhood[i + 1][j + 1] = input[y + i][x + j];
                }
            }
            
            // 使用查找表进行转换
            int code = encodeNeighborhood(neighborhood);
            output[y][x] = lut[code];
        }
    }

    // 处理边缘像素 (拷贝原始值)
    for (int x = 0; x < WIDTH; ++x) {
        output[0][x] = input[0][x];
        output[HEIGHT-1][x] = input[HEIGHT-1][x];
    }
    for (int y = 0; y < HEIGHT; ++y) {
        output[y][0] = input[y][0];
        output[y][WIDTH-1] = input[y][WIDTH-1];
    }
}

int main() {
    // 示例二值图像 (3x3)
    int input[HEIGHT][WIDTH] = {
        {1, 0, 1},
        {0, 1, 0},
        {1, 0, 1}
    };
    
    // 初始化输出图像
    int output[HEIGHT][WIDTH] = {0};
    
    // 示例查找表
    int lut[512] = {0};
    lut[2] = 1; // 设定特定模式的输出值
    
    // 应用 bwlookup
    bwlookup(input, output, lut);
    
    // 打印结果图像
    for (int y = 0; y < HEIGHT; ++y) {
        for (int x = 0; x < WIDTH; ++x) {
            printf("%d ", output[y][x]);
        }
        printf("\n");
    }
    
    return 0;
}

显然它给的矩阵滤波器顺序搞错了,它的顺序是

这是行优先,我本来理解为要列优先,其实人matlab代码给出解释了(包括网页)

手动改动下

仔细观察,

这给地方还有一个加1,c代码中求和一样的code,没有加1,原因是这里做index的时候,c是从0开始,index本身比matlab就要少1

这样计算出来发现还不对,仔细对比,中心数据都对上了,发现还是边缘不对

matlab中的原矩阵需要扩展,扩展的地方都要填0,然后只取中间

把想法交给GPT,让他生成把

#include <stdio.h>

#define HEIGHT 5
#define WIDTH 5

// 将 3x3 邻域编码为一个 9 位二进制数
int encodeNeighborhood(int arr[3][3]) {
    int code = 0;
    for (int i = 0; i < 3; ++i) {
        for (int j = 0; j < 3; ++j) {
            code |= (arr[i][j] << (i * 3 + j));
        }
    }
    return code;
}

// 应用查找表进行形态学操作
void bwlookup(int input[HEIGHT][WIDTH], int output[HEIGHT][WIDTH], int lut[512]) {
    int extendedInput[HEIGHT + 2][WIDTH + 2] = {0}; // 扩展后的输入数组,初始化为零
    int neighborhood[3][3];

    // 将原始输入复制到扩展后的数组中
    for (int y = 0; y < HEIGHT; ++y) {
        for (int x = 0; x < WIDTH; ++x) {
            extendedInput[y + 1][x + 1] = input[y][x];
        }
    }

    // 对扩展后的数组应用形态学操作
    for (int y = 1; y < HEIGHT + 1; ++y) {
        for (int x = 1; x < WIDTH + 1; ++x) {
            // 提取 3x3 邻域
            for (int i = -1; i <= 1; ++i) {
                for (int j = -1; j <= 1; ++j) {
                    neighborhood[i + 1][j + 1] = extendedInput[y + i][x + j];
                }
            }

            // 使用查找表进行转换
            int code = encodeNeighborhood(neighborhood);
            output[y - 1][x - 1] = lut[code];
        }
    }
}

// 测试函数
int main() {
    int input[HEIGHT][WIDTH] = {
        {0, 0, 0, 0, 0},
        {0, 1, 1, 1, 0},
        {0, 1, 1, 1, 0},
        {0, 1, 1, 1, 0},
        {0, 0, 0, 0, 0}
    };

    int output[HEIGHT][WIDTH] = {0}; // 初始化输出数组
    int lut[512]; // 查找表

    // 初始化查找表 (这里假设查找表已定义)
    for (int i = 0; i < 512; ++i) {
        lut[i] = 1; // 这里只是一个示例,你应该根据实际需求初始化查找表
    }

    // 应用形态学操作
    bwlookup(input, output, lut);

    // 打印输出
    printf("输出:\n");
    for (int y = 0; y < HEIGHT; ++y) {
        for (int x = 0; x < WIDTH; ++x) {
            printf("%d ", output[y][x]);
        }
        printf("\n");
    }

    return 0;
}
相关推荐
机智的小神仙儿2 小时前
GPT-1.0、GPT-2.0、GPT-3.0参数对比
gpt·语言模型·gpt-3
Landy_Jay3 小时前
深度学习:GPT-1的MindSpore实践
人工智能·gpt·深度学习
hunteritself21 小时前
ChatGPT高级语音模式正在向Web网页端推出!
人工智能·gpt·chatgpt·openai·语音识别
2402_871321951 天前
MATLAB方程组
gpt·学习·线性代数·算法·matlab
xwm10001 天前
【如何用更少的数据作出更好的决策】-gpt生成
gpt
学习前端的小z1 天前
【AIGC】如何准确引导ChatGPT,实现精细化GPTs指令生成
人工智能·gpt·chatgpt·aigc
菜鸟小码农的博客2 天前
昇思MindSpore第四课---GPT实现情感分类
gpt·分类·数据挖掘
bingbingyihao2 天前
代码辅助工具 GPT / Cursor
android·java·gpt
hunteritself3 天前
ChatGPT Search VS Kimi探索版:AI搜索哪家强?!
人工智能·gpt·chatgpt·openai·xai
qq_339191144 天前
笔记本run个llm, 本地如何启动大模型,大模型ubuntu 3b llm启动,llm部署 ollama 黑盒run大模型
gpt