在 Mac 上使用 MLX 微调微软 phi3 模型

微调大语言模型是常见的需求,由于模型参数量大,即使用 Lora/Qlora 进行微调也需要 GPU 显卡,Mac M系是苹果自己的 GPU,目前主流的框架还在建立在 CUDA 的显卡架构,也就是主要的卡还是来自英伟达。如果要用 Mac 来做训练和推理,需要用MLX,MLX 类似于 Pytorch,对苹果芯片做了支持,从而使得苹果电脑也可以进行深度学习。本文将介绍如何用 MLX 训练 Phi3 大语言模型:

安装 MLX

pip install mlx-lm

模型下载推理

这里需要访问 HuggingFace 下载,可以使用国内镜像

国内镜像
https://hf-mirror.com/

export HF_ENDPOINT=https://hf-mirror.com


python -m mlx_lm.generate --model microsoft/Phi-3-mini-4k-instruct --max-token 2048 --prompt  "<|user|>\nCan you introduce yourself<|end|>\n<|assistant|>"

HF 模型转换为 MLX 模型

mlx 的命令都有一些默认值,-h 中没有具体说明, 只能去源码里看。

例如,转换完成的模型会保存到 mlx_model 目录下。

python -m mlx_lm.convert --hf-path microsoft/Phi-3-mini-4k-instruct

通过 MLX 进行调优

首先准备数据,MLX 使用 jsonl 数据格式进行训练,从 github 下载数据集并存放到 data 目录下,一共三个文件,test、train 和 valid,文件下载好之后我们就可以开始训练了。

https://github.com/microsoft/Phi-3CookBook/tree/main/code/04.Finetuning/mlx/data

消耗资源比较多,M2 风扇又开始转了。

python -m mlx_lm.lora --model microsoft/Phi-3-mini-4k-instruct --train --data ./data --iters 1000 

模型推理

  • 运行未训练的模型和训练好的模型,并对推理的结果进行比较。

    python -m mlx_lm.generate --model microsoft/Phi-3-mini-4k-instruct --adapter-path ./adapters --max-token 2048 --prompt "Why do chameleons change colors? " --eos-token "<|end|>"

  • 原始模型

    python -m mlx_lm.generate --model microsoft/Phi-3-mini-4k-instruct --max-token 2048 --prompt "Why do chameleons change colors? " --eos-token "<|end|>"

合并模型

将训练好的 Lora adapter 合并到原始模型中。

python -m mlx_lm.fuse --model microsoft/Phi-3-mini-4k-instruct

生成 GGUF

通过 llama.cpp 生成 GGUF,量化参数支持 'f32', 'f16', 'bf16', 'q8_0',根据需要自行修改。Phi3 模型默认没有 tokenizer.model,需要从 HF 下载

https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/tree/main

将 tokenizer.model 复制到 /lora_fused_model/ 目录下,完成后运行生成GGUF 的转换命令。

git clone https://github.com/ggerganov/llama.cpp.git

cd llama.cpp

pip install -r requirements.txt

python convert-hf-to-gguf.py ../lora_fused_model  --outfile ../phi-3-mini-ft.gguf --outtype q8_0

创建 Ollma 模型

首先创建 Ollama 的模型文件 ModelFile,和上一步生成的 gguf 文件放到同一个目录下

FROM ./phi-3-mini-ft.gguf
PARAMETER stop "<|end|>"

创建模型

ollama create phi3ft -f Modelfile

Ollama 启动模型并进行推理

ollama run phi3ft

总结

MLX 模型推理非常简单,数据准备好就可以训练和推理,本次使用的是 phi3 模型,中文支持的不好,以后可以试试 Qwen2 怎么样。

相关推荐
Java小白笔记6 小时前
Mac中安装homebrew
macos
HerayChen10 小时前
HbuildderX运行到手机或模拟器的Android App基座识别不到设备 mac
android·macos·智能手机
hairenjing112310 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小李飞刀李寻欢12 小时前
Mac电脑如何解压rar压缩包
macos·rar·解压
Java小白笔记12 小时前
Mac中禁用系统更新
macos
AndyFrank12 小时前
mac crontab 不能使用问题简记
linux·运维·macos
Mac新人12 小时前
一招解决Mac没有剪切板历史记录的问题
macos·mac
王拴柱12 小时前
Mac保护电池健康,延长电池使用寿命的好方法
macos·mac
daa2012 小时前
macos中安装和设置ninja
macos
Java小白笔记14 小时前
Mac解决 zsh: command not found: ll
macos