Flink推测机制

1、配置

execution.batch.speculative.enabled:false,推测机制开关,必须在AdaptiveBatchScheduler模式下使用

execution.batch.speculative.max-concurrent-executions:2,同时最多几次执行

execution.batch.speculative.block-slow-node-duration:1分钟,慢速节点会如黑名单,控制在黑名单中的时长

slow-task-detector.check-interval:1秒,慢任务检查间隔

slow-task-detector.execution-time.baseline-lower-bound:1分钟,慢任务检测基线的下限

slow-task-detector.execution-time.baseline-ratio:0.75,开始检测慢任务基线的任务完成率,即有75%任务完成后,开始计算剩下的任务是否为慢任务

slow-task-detector.execution-time.baseline-multiplier:1.5,慢任务基线乘数

2、SpeculativeScheduler

推测机制在AdaptiveBatchScheduler模式下使用,在AdaptiveBatchSchedulerFactory当中,创建调度器时,如果开启了推测机制,会创建SpeculativeScheduler

java 复制代码
if (enableSpeculativeExecution) {
    return new SpeculativeScheduler(
            log,
            jobGraph,
            ioExecutor,
            jobMasterConfiguration,

2.1、启动

调度器启动时有三个操作:1、注册指标;2、父类通用的启动流程,会有算子的一些初始化;3、启动慢任务检测任务

java 复制代码
protected void startSchedulingInternal() {
    registerMetrics(jobManagerJobMetricGroup);

    super.startSchedulingInternal();
    slowTaskDetector.start(getExecutionGraph(), this, getMainThreadExecutor());
}

2.2、SlowTaskDetector

SlowTaskDetector负责检测慢任务,实现类是ExecutionTimeBasedSlowTaskDetector,基于schedule进行检测

java 复制代码
this.scheduledDetectionFuture =
        mainThreadExecutor.schedule(
                () -> {
                    listener.notifySlowTasks(findSlowTasks(executionGraph));
                    scheduleTask(executionGraph, listener, mainThreadExecutor);
                },
                checkIntervalMillis,
                TimeUnit.MILLISECONDS);

核心是findSlowTasks,首先是获取需要校验的拓扑集

java 复制代码
private List<ExecutionJobVertex> getJobVerticesToCheck(final ExecutionGraph executionGraph) {
    return IterableUtils.toStream(executionGraph.getVerticesTopologically())
            .filter(ExecutionJobVertex::isInitialized)
            .filter(ejv -> ejv.getAggregateState() != ExecutionState.FINISHED)
            .filter(ejv -> getFinishedRatio(ejv) >= baselineRatio)
            .collect(Collectors.toList());
}

getFinishedRatio就是获取完成任务数超过基线比率的,就是拓扑集中完成任务数和总任务数的比值

java 复制代码
private double getFinishedRatio(final ExecutionJobVertex executionJobVertex) {
    checkState(executionJobVertex.getTaskVertices().length > 0);
    long finishedCount =
            Arrays.stream(executionJobVertex.getTaskVertices())
                    .filter(ev -> ev.getExecutionState() == ExecutionState.FINISHED)
                    .count();
    return (double) finishedCount / executionJobVertex.getTaskVertices().length;
}

接下来是获取基线和在基线基础上计算慢速任务的,接口是getBaseline和findExecutionsExceedingBaseline,本质就是执行时间和基线的对比,注意这里不仅用到了时间,还用到了输入字节数,所以慢任务的检测可能是基于吞吐来的

java 复制代码
private ExecutionTimeWithInputBytes getBaseline(
        final ExecutionJobVertex executionJobVertex, final long currentTimeMillis) {
    final ExecutionTimeWithInputBytes weightedExecutionTimeMedian =
            calculateFinishedTaskExecutionTimeMedian(executionJobVertex, currentTimeMillis);
    long multipliedBaseline =
            (long) (weightedExecutionTimeMedian.getExecutionTime() * baselineMultiplier);

    return new ExecutionTimeWithInputBytes(
            multipliedBaseline, weightedExecutionTimeMedian.getInputBytes());
}


return Double.compare(
        (double) executionTime / Math.max(inputBytes, Double.MIN_VALUE),
        (double) other.getExecutionTime()
                / Math.max(other.getInputBytes(), Double.MIN_VALUE));

2.3、notifySlowTasks

获取慢速任务以后,SlowTaskDetector会触发监听器,监听器的处理实现在SpeculativeScheduler的notifySlowTasks接口

首先把节点加入黑名单

java 复制代码
// add slow nodes to blocklist before scheduling new speculative executions
blockSlowNodes(slowTasks, currentTimestamp);

这边会检测任务是否支持推测,默认是支持

java 复制代码
if (!executionVertex.isSupportsConcurrentExecutionAttempts()) {
    continue;
}

基于时间戳,对慢任务新建Execution

java 复制代码
final Collection<Execution> attempts =
        IntStream.range(0, newSpeculativeExecutionsToDeploy)
                .mapToObj(
                        i ->
                                executionVertex.createNewSpeculativeExecution(
                                        currentTimestamp))
                .collect(Collectors.toList());

之后会进行一系列的配置,加入监控

java 复制代码
setupSubtaskGatewayForAttempts(executionVertex, attempts);
verticesToDeploy.add(executionVertexId);
newSpeculativeExecutions.addAll(attempts);

最后发起调度

java 复制代码
executionDeployer.allocateSlotsAndDeploy(
        newSpeculativeExecutions,
        executionVertexVersioner.getExecutionVertexVersions(verticesToDeploy));

3、任务结束

任务结束主要核心在DefaultExecutionGraph的jobFinished,判断在上层ExecutionJobVertex.executionVertexFinished,这里是通过任务并行度来判断的,所有子任务完成则认为job完成

java 复制代码
void executionVertexFinished() {
    checkState(isInitialized());
    numExecutionVertexFinished++;
    if (numExecutionVertexFinished == parallelismInfo.getParallelism()) {
        getGraph().jobVertexFinished();
    }
}

这个的调用是由Execution触发的,也就是每个子任务完成会去调用一次

java 复制代码
if (transitionState(current, FINISHED)) {
    try {
        finishPartitionsAndUpdateConsumers();
        updateAccumulatorsAndMetrics(userAccumulators, metrics);
        releaseAssignedResource(null);
        vertex.getExecutionGraphAccessor().deregisterExecution(this);
    } finally {
        vertex.executionFinished(this);
    }
    return;
}

最终一个jobVertex(对应Job的一个任务,任务根据并行度有子任务)完成的时候会通知所有子任务完成

java 复制代码
public void jobVertexFinished() {
    assertRunningInJobMasterMainThread();
    final int numFinished = ++numFinishedJobVertices;
    if (numFinished == numJobVerticesTotal) {
        FutureUtils.assertNoException(
                waitForAllExecutionsTermination().thenAccept(ignored -> jobFinished()));
    }
}
相关推荐
老蒋新思维5 小时前
创客匠人启示:破解知识交付的“认知摩擦”——IP、AI与数据的三角解耦模型
大数据·人工智能·网络协议·tcp/ip·重构·创客匠人·知识变现
Jackeyzhe5 小时前
Flink源码阅读:如何生成JobGraph
flink
爱埋珊瑚海~~5 小时前
基于MediaCrawler爬取热点视频
大数据·python
工程师丶佛爷5 小时前
从零到一MCP集成:让模型实现从“想法”到“实践”的跃迁
大数据·人工智能·python
2021_fc6 小时前
Flink笔记
大数据·笔记·flink
Light606 小时前
数据要素与数据知识产权交易中心建设专项方案——以领码 SPARK 融合平台为技术底座,构建可评估、可验证、可交易、可监管的数据要素工程体系
大数据·分布式·spark
zyxzyx497 小时前
AI 实战:从零搭建轻量型文本分类系统
大数据·人工智能·分类
五阿哥永琪7 小时前
SQL中的函数--开窗函数
大数据·数据库·sql
程序员小羊!7 小时前
数仓数据基线,在不借助平台下要怎么做?
大数据·数据仓库
火山引擎开发者社区9 小时前
两大模型发布!豆包大模型日均使用量突破 50 万亿 Tokens
大数据·人工智能