微软最新AI:GraphRAG+Chainlit实现跨文档智能检索分析打造私人AI助手

文章目录


前言

本月初,微软发布最强 RAG 知识库开源方案 GraphRAG,项目上线即爆火,现在星标量已经达到 10.9 k。

https://github.com/microsoft/graphrag


一、GraphRAG安装

1.创建一个新项目

建议使用Python3.11环境

2.安装GraphRAG

python 复制代码
pip install graphrag

3.初始化

python 复制代码
mkdir -p ./ragtest/input
curl https://raw.githubusercontent.com/win4r/mytest/main/book.txt > ./ragtest/input/book.txt
python3 -m graphrag.index --init --root ./ragtest

4.配置相关文件

将API_KEY改成chatgpt4的api

5.执行并构建索引

python 复制代码
python3 -m graphrag.index --root ./ragtest

二、Chainlit安装

1.安装Chainlit包

python 复制代码
pip3 install chainlit

2.创建app.py

python 复制代码
import chainlit as cl
import subprocess
import shlex


@cl.on_chat_start
def start():
    cl.user_session.set("history", [])


@cl.on_message
async def main(message: cl.Message):
    history = cl.user_session.get("history")

    # 从 Message 对象中提取文本内容
    query = message.content

    # 构建命令
    cmd = [
        "python3", "-m", "graphrag.query",
        "--root", "./ragtest",
        "--method", "local",
    ]

    # 安全地添加查询到命令中
    cmd.append(shlex.quote(query))

    # 运行命令并捕获输出
    try:
        result = subprocess.run(cmd, capture_output=True, text=True, check=True)
        output = result.stdout

        # 提取 "SUCCESS: Local Search Response:" 之后的内容
        response = output.split("SUCCESS: Local Search Response:", 1)[-1].strip()

        history.append((query, response))
        cl.user_session.set("history", history)

        await cl.Message(content=response).send()
    except subprocess.CalledProcessError as e:
        error_message = f"An error occurred: {e.stderr}"
        await cl.Message(content=error_message).send()


if __name__ == "__main__":
    cl.run()

3.运行

python 复制代码
chainlit run app.py

学习资料

http://t.csdnimg.cn/Wy8UJ

https://www.bilibili.com/video/BV1EE4m1R7wn?vd_source=a19eed2fa1f675b1a40c1824b67c7141

https://blog.stoeng.site/20240704.html

https://docs.dbgpt.site/docs/latest/cookbook/rag/graph_rag_app_develop/?spm=ata.21736010.0.0.635d79f3pT08lx

相关推荐
源码技术栈6 分钟前
智慧工地微服务架构+Java+Spring Cloud +Uni-App +MySql开发,在微信公众号、小程序、H5、移动端
java·ai·saas·智慧工地·智慧工地项目·可视化大屏·智慧工地系统
前端无涯34 分钟前
Qoder的使用
前端·ide·ai·qoder
晨启AI1 小时前
ClaudeCode 实战指南(六):Skills 技能包开发与自动化实战
ai·实战·ai编程·skill·claude code
我很哇塞耶2 小时前
英伟达开源发布最新AI模型!引入突破性专家混合架构,推理性能超越Qwen3和GPT,百万token上下文,模型数据集全开源!
人工智能·ai·大模型
undsky_2 小时前
【n8n教程】:n8n CLI 命令行工具
人工智能·ai·aigc·ai编程
醇氧2 小时前
springAI学习 (二) 模型
java·学习·spring·ai·ai编程
羑悻的小杀马特2 小时前
破局IoT与大数据协同难题!Apache IoTDB用硬核性能打底、强生态护航,成行业新宠!
大数据·物联网·ai·apache·iotdb
Z3r4y2 小时前
【AI】2025 0x401新生交流赛 wp
人工智能·ai·ctf·wp
wumingxiaoyao13 小时前
AI - 使用 Google ADK 创建你的第一个 AI Agent
人工智能·ai·ai agent·google adk
小小代码团13 小时前
2026 Office Online Server (全网最新/最详细/含问题修复) 终极部署教程
windows·microsoft·c#