Starrocks创建物化视图时不能写select *

CREATE MATERIALIZED VIEW dw_stream.xxx_amv_sr

PARTITION BY date_trunc('DAY', pt)

DISTRIBUTED BY HASH(emp_id) BUCKETS 10 REFRESH ASYNC START('2024-07-17 16:47:02') EVERY(INTERVAL 1 minute)

PROPERTIES ( "replication_num" = "3", "storage_medium" = "HDD", "auto_refresh_partitions_limit" = "5", "partition_refresh_number" = "2", "partition_ttl_number" = "2" ) AS

select emp_id ,emp_name ,pt ,sum(case when item = 'foot' then amount else 0 end) as hot_put_get_send_wo_cnt ,sum(case when item = 'finish' then amount else 0 end) as hot_put_get_finish_wo_cnt ,sum(case when item = 'foot' then amount else 0 end) as gain_put_get_send_wo_cnt ,sum(case when item = 'finish' then amount else 0 end) as gain_put_get_finish_wo_cnt from

( select emp_id ,

emp_name ,

pt ,

item,

amount,

row_number() over(partition by pt,block_id,item order by gmt_modify desc) rn

from dw_stream.xxx_dup_sr

where item in ( 'foot' ,'finish' ) )a1 where rn = 1 group by emp_id,emp_name,pt

不能写成:

CREATE MATERIALIZED VIEW dw_stream.xxx_amv_sr

PARTITION BY date_trunc('DAY', pt)

DISTRIBUTED BY HASH(emp_id) BUCKETS 10 REFRESH ASYNC START('2024-07-17 16:47:02') EVERY(INTERVAL 1 minute)

PROPERTIES ( "replication_num" = "3", "storage_medium" = "HDD", "auto_refresh_partitions_limit" = "5", "partition_refresh_number" = "2", "partition_ttl_number" = "2" ) AS

select emp_id ,emp_name ,pt ,sum(case when item = 'foot' then amount else 0 end) as hot_put_get_send_wo_cnt ,sum(case when item = 'finish' then amount else 0 end) as hot_put_get_finish_wo_cnt ,sum(case when item = 'foot' then amount else 0 end) as gain_put_get_send_wo_cnt ,sum(case when item = 'finish' then amount else 0 end) as gain_put_get_finish_wo_cnt from

( select

*

row_number() over(partition by pt,block_id,item order by gmt_modify desc) rn

from dw_stream.xxx_dup_sr

where item in ( 'foot' ,'finish' ) )a1 where rn = 1 group by emp_id,emp_name,pt

相关推荐
孟意昶3 天前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data
喂完待续6 天前
【Big Data】Amazon S3 专为从任何位置检索任意数量的数据而构建的对象存储
大数据·云原生·架构·big data·对象存储·amazon s3·序列晋升
喂完待续7 天前
【序列晋升】31 Spring Cloud App Broker 微服务时代的云服务代理框架
spring·spring cloud·微服务·云原生·架构·big data·序列晋升
喂完待续10 天前
【序列晋升】28 云原生时代的消息驱动架构 Spring Cloud Stream的未来可能性
spring cloud·微服务·云原生·重构·架构·big data·序列晋升
喂完待续11 天前
【序列晋升】29 Spring Cloud Task 微服务架构下的轻量级任务调度框架
java·spring·spring cloud·云原生·架构·big data·序列晋升
喂完待续12 天前
【Big Data】Apache Kafka 分布式流处理平台的实时处理实践与洞察
分布式·kafka·消息队列·big data·数据处理·序列晋升
喂完待续13 天前
【Big Data】云原生与AI时代的存储基石 Apache Ozone 的技术演进路径
云原生·架构·apache·big data·序列晋升
喂完待续15 天前
【序列晋升】25 Spring Cloud Open Service Broker 如何为云原生「服务市集」架桥铺路?
spring·spring cloud·微服务·云原生·系统架构·big data·序列晋升
喂完待续18 天前
【Big Data】AI赋能的ClickHouse 2.0:从JIT编译到LLM查询优化,下一代OLAP引擎进化路径
大数据·数据库·clickhouse·数据分析·olap·big data·序列晋升
晴天彩虹雨2 个月前
统一调度与编排:构建自动化数据驱动平台
大数据·运维·数据仓库·自动化·big data·etl