【LLM-推理】Self-Refine:使用feedback迭代修正LLM的Output

来源: https://selfrefine.info/

1.论文速读(摘要+引言)

本文主要提出了Self-Refine策略,旨在通过一个LLM不断refine修正LLM的输出,使其在无需额外训练的情况下,在下游任务产生更好的效果。

该方法的直观Insight:我们在写一封 email 时,往往写出一个 draft,然后再修改其中措辞不当的地方,修改为更好的版本。
其思路如下图:

  • 首先,给定一个 input x,在 prompt pgen下让 LLM 先生成一个初始 outputy0
  • 进行迭代,每一轮 t 中:
    • Feedback:input x、上一轮 output y(t)prompt p(fb)给 LLM,得到这一轮的 feedback f(bt)【feedback的prompt】
    • Refine:input x历史的所有 feedbackoutputprompt P(refine) 给 LLM,得到这一轮的 output T(t+1)。【refine重新优化的prompt】

​如此迭代,直到 feedback 中被检查出有stop标识符,或者达到了最大迭代次数。

2.方法 method

给定输入,self-refine生成最初的输出,根据该输出提出反馈,然后根据反馈优化输出。直到得到满意的答案。self-refine依靠LLM和三个prompts(生成输出的Prompt,生成反馈的Prompt,根据反馈优化输出的优化Prompt)

3.评估

主要在这几个任务进行评估:

对话生成

代码优化

代码可读性提升 数学推理

反转情绪

缩写词生成

限制性生成



Metrics指标效果:
Math reasoning %解决率code optimization:% 代码优化率Acronym Generation:%受限生成

相关推荐
dme.24 分钟前
Python爬虫selenium验证-中文识别点选+图片验证码案例
爬虫·python
东方-教育技术博主27 分钟前
wps中zotero插件消失,解决每次都需要重新开问题
python
镰圈量化1 小时前
当电脑上有几个python版本Vscode选择特定版本python
开发语言·vscode·python
宇努力学习1 小时前
如何本地部署seepseek
python·ai·ollama·deepseek
橙狮科技1 小时前
使用 GPTQ 进行 4 位 LLM 量化
人工智能·python·语言模型
开开心心就好1 小时前
娱乐使用,可以生成转账、图片、聊天等对话内容
windows·python·智能手机·软件工程·娱乐·软件需求
愚昧之山绝望之谷开悟之坡1 小时前
ragflow-RAPTOR到底是什么?请通俗的解释!
python
背太阳的牧羊人2 小时前
RAG检索中使用一个 长上下文重排序器(Long Context Reorder) 对检索到的文档进行进一步的处理和排序,优化输出顺序
开发语言·人工智能·python·langchain·rag
007_rbq2 小时前
XUnity.AutoTranslator-Gemini——调用Google的Gemini API, 实现Unity游戏中日文文本的自动翻译
人工智能·python·游戏·机器学习·unity·github·机器翻译
Java知识技术分享2 小时前
使用LangChain构建第一个ReAct Agent
python·react.js·ai·语言模型·langchain