【LLM-推理】Self-Refine:使用feedback迭代修正LLM的Output

来源: https://selfrefine.info/

1.论文速读(摘要+引言)

本文主要提出了Self-Refine策略,旨在通过一个LLM不断refine修正LLM的输出,使其在无需额外训练的情况下,在下游任务产生更好的效果。

该方法的直观Insight:我们在写一封 email 时,往往写出一个 draft,然后再修改其中措辞不当的地方,修改为更好的版本。
其思路如下图:

  • 首先,给定一个 input x,在 prompt pgen下让 LLM 先生成一个初始 outputy0
  • 进行迭代,每一轮 t 中:
    • Feedback:input x、上一轮 output y(t)prompt p(fb)给 LLM,得到这一轮的 feedback f(bt)【feedback的prompt】
    • Refine:input x历史的所有 feedbackoutputprompt P(refine) 给 LLM,得到这一轮的 output T(t+1)。【refine重新优化的prompt】

​如此迭代,直到 feedback 中被检查出有stop标识符,或者达到了最大迭代次数。

2.方法 method

给定输入,self-refine生成最初的输出,根据该输出提出反馈,然后根据反馈优化输出。直到得到满意的答案。self-refine依靠LLM和三个prompts(生成输出的Prompt,生成反馈的Prompt,根据反馈优化输出的优化Prompt)

3.评估

主要在这几个任务进行评估:

对话生成

代码优化

代码可读性提升 数学推理

反转情绪

缩写词生成

限制性生成



Metrics指标效果:
Math reasoning %解决率code optimization:% 代码优化率Acronym Generation:%受限生成

相关推荐
蓝天星空1 小时前
Python调用open ai接口
人工智能·python
jasmine s1 小时前
Pandas
开发语言·python
郭wes代码1 小时前
Cmd命令大全(万字详细版)
python·算法·小程序
leaf_leaves_leaf2 小时前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零12 小时前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
404NooFound2 小时前
Python轻量级NoSQL数据库TinyDB
开发语言·python·nosql
天天要nx2 小时前
D102【python 接口自动化学习】- pytest进阶之fixture用法
python·pytest
minstbe2 小时前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机
落魄实习生2 小时前
AI应用-本地模型实现AI生成PPT(简易版)
python·ai·vue·ppt
苏言の狗2 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习