【LLM-推理】Self-Refine:使用feedback迭代修正LLM的Output

来源: https://selfrefine.info/

1.论文速读(摘要+引言)

本文主要提出了Self-Refine策略,旨在通过一个LLM不断refine修正LLM的输出,使其在无需额外训练的情况下,在下游任务产生更好的效果。

该方法的直观Insight:我们在写一封 email 时,往往写出一个 draft,然后再修改其中措辞不当的地方,修改为更好的版本。
其思路如下图:

  • 首先,给定一个 input x,在 prompt pgen下让 LLM 先生成一个初始 outputy0
  • 进行迭代,每一轮 t 中:
    • Feedback:input x、上一轮 output y(t)prompt p(fb)给 LLM,得到这一轮的 feedback f(bt)【feedback的prompt】
    • Refine:input x历史的所有 feedbackoutputprompt P(refine) 给 LLM,得到这一轮的 output T(t+1)。【refine重新优化的prompt】

​如此迭代,直到 feedback 中被检查出有stop标识符,或者达到了最大迭代次数。

2.方法 method

给定输入,self-refine生成最初的输出,根据该输出提出反馈,然后根据反馈优化输出。直到得到满意的答案。self-refine依靠LLM和三个prompts(生成输出的Prompt,生成反馈的Prompt,根据反馈优化输出的优化Prompt)

3.评估

主要在这几个任务进行评估:

对话生成

代码优化

代码可读性提升 数学推理

反转情绪

缩写词生成

限制性生成



Metrics指标效果:
Math reasoning %解决率code optimization:% 代码优化率Acronym Generation:%受限生成

相关推荐
程序员小远3 小时前
银行测试:第三方支付平台业务流,功能/性能/安全测试方法
自动化测试·软件测试·python·功能测试·测试工具·性能测试·安全性测试
猫头虎5 小时前
如何查看局域网内IP冲突问题?如何查看局域网IP环绕问题?arp -a命令如何使用?
网络·python·网络协议·tcp/ip·开源·pandas·pip
沿着路走到底5 小时前
python 基础
开发语言·python
烛阴7 小时前
武装你的Python“工具箱”:盘点10个你必须熟练掌握的核心方法
前端·python
杨枝甘露小码8 小时前
Python学习之基础篇
开发语言·python
我是华为OD~HR~栗栗呀8 小时前
23届考研-Java面经(华为OD)
java·c++·python·华为od·华为·面试
小蕾Java8 小时前
PyCharm 软件使用各种问题 ,解决教程
ide·python·pycharm
Lucky_Turtle8 小时前
【PyCharm】设置注释风格,快速注释
python
kunge1v59 小时前
学习爬虫第四天:多任务爬虫
爬虫·python·学习·beautifulsoup
萧鼎9 小时前
Python schedule 库全解析:从任务调度到自动化执行的完整指南
网络·python·自动化