昇思25天学习打卡营第11天|基于 MindSpore 实现 BERT 对话情绪识别

BERT是一种先进的语言模型,由Google在2018年推出。它通过双向编码器Transformer的Encoder部分,捕捉词语和句子的深层含义。BERT的创新之处在于其预训练方法,特别是Masked Language Model和Next Sentence Prediction,这使得它在问答、文本分类等任务上表现出色。在训练中,15%的单词会被随机掩码,以增强模型对上下文的理解。BERT模型经过预训练后,可以用于微调,以适应各种下游任务,如情绪识别,这在智能对话中尤为重要,有助于提升用户体验和服务质量。

BERT模型的双向编码特性和创新的预训练方法,不仅提高了语言模型的理解和生成能力,还为情绪识别等应用提供了强大的基础。通过微调,BERT可以灵活应用于多种场景。

相关推荐
peixiuhui26 分钟前
EdgeGateway 快速开始手册-表达式 Modbus 报文格式
人工智能·mqtt·边缘计算·iot·modbus tcp·iotgateway·modbus rtu
好奇龙猫36 分钟前
【大学院-筆記試験練習:数据库(データベース問題訓練) と 软件工程(ソフトウェア)(7)】
学习
bing.shao1 小时前
golang 做AI任务执行
开发语言·人工智能·golang
鼎道开发者联盟1 小时前
2025中国AI开源生态报告发布,鼎道智联助力产业高质量发展
人工智能·开源·gui
贾维思基1 小时前
告别RPA和脚本!视觉推理Agent,下一代自动化的暴力解法
人工智能·agent
P-ShineBeam1 小时前
引导式问答-对话式商品搜索-TRACER
人工智能·语言模型·自然语言处理·知识图谱
j_jiajia1 小时前
(一)人工智能算法之监督学习——KNN
人工智能·学习·算法
Hcoco_me2 小时前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人
2301_783360132 小时前
关于RNAseq——从fastq到gene_counts全流程
笔记·学习
OpenCSG2 小时前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习