昇思25天学习打卡营第11天|基于 MindSpore 实现 BERT 对话情绪识别

BERT是一种先进的语言模型,由Google在2018年推出。它通过双向编码器Transformer的Encoder部分,捕捉词语和句子的深层含义。BERT的创新之处在于其预训练方法,特别是Masked Language Model和Next Sentence Prediction,这使得它在问答、文本分类等任务上表现出色。在训练中,15%的单词会被随机掩码,以增强模型对上下文的理解。BERT模型经过预训练后,可以用于微调,以适应各种下游任务,如情绪识别,这在智能对话中尤为重要,有助于提升用户体验和服务质量。

BERT模型的双向编码特性和创新的预训练方法,不仅提高了语言模型的理解和生成能力,还为情绪识别等应用提供了强大的基础。通过微调,BERT可以灵活应用于多种场景。

相关推荐
SHIPKING39329 分钟前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
DKPT4 小时前
Java桥接模式实现方式与测试方法
java·笔记·学习·设计模式·桥接模式
子燕若水4 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室5 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿6 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫6 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手6 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记6 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元7 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶