《Towards Black-Box Membership Inference Attack for Diffusion Models》论文笔记

《Towards Black-Box Membership Inference Attack for Diffusion Models》

Abstract

  1. 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击------copyright protection
  2. 不需要访问内部模型组件的新型黑盒攻击方法
  3. 展示了在评估 DALL-E 生成的数据集方面的卓越性能。

作者主张

previous methods are not yet ready for copyright protection in diffusion models.

Contributions(文章里有三点,我觉得只有两点)

  1. ReDiffuse:using the model's variation API to alter an image and compare it with the original one.
  2. A new MIA evaluation dataset:use the image titles from LAION-5B as prompts for DALL-E's API [31] to generate images of the same contents but different styles.

Algorithm Design

target model:DDIM

为什么要强行引入一个版权保护的概念???

定义black-box variation API

x ^ = V θ ( x , t ) \hat{x}=V_{\theta}(x,t) x^=Vθ(x,t)

细节如下:

总结为: x x x加噪变为 x t x_t xt,再通过DDIM连续降噪变为 x ^ \hat{x} x^

intuition

Our key intuition comes from the reverse SDE dynamics in continuous diffusion models.

one simplified form of the reverse SDE (i.e., the denoise step)
X t = ( X t / 2 − ∇ x log ⁡ p ( X t ) ) + d W t , t ∈ [ 0 , T ] (3) X_t=(X_t/2-\nabla_x\log p(X_t))+dW_t,t\in[0,T]\tag{3} Xt=(Xt/2−∇xlogp(Xt))+dWt,t∈[0,T](3)

The key guarantee is that when the score function is learned for a data point x, then the reconstructed image x ^ i \hat{x}_i x^i is an unbiased estimator of x x x.(算是过拟合的另一种说法吧)

Hence,averaging over multiple independent samples x ^ i \hat{x}_i x^i would greatly reduce the estimation error (see Theorem 1).

On the other hand, for a non-member image x ′ x' x′, the unbiasedness of the denoised image is not guaranteed.

details of algorithm:

  1. independently apply the black-box variation API n times with our target image x as input
  2. average the output images
  3. compare the average result x ^ \hat{x} x^ with the original image.

evaluate the difference between the images using an indicator function:
f ( x ) = 1 [ D ( x , x ^ ) < τ ] f(x)=1[D(x,\hat{x})<\tau] f(x)=1[D(x,x^)<τ]

A sample is classified to be in the training set if D ( x , x ^ ) D(x,\hat{x}) D(x,x^) is smaller than a threshold τ \tau τ ( D ( x , x ^ ) D(x,\hat{x}) D(x,x^) represents the difference between the two images)

ReDiffuse
Theoretical Analysis

什么是sampling interval???

MIA on Latent Diffusion Models

泛化到latent diffusion model,即Stable Diffusion

ReDiffuse+

variation API for stable diffusion is different from DDIM, as it includes the encoder-decoder process.
z = E n c o d e r ( x ) , z t = α ‾ t z + 1 − α ‾ t ϵ , z ^ = Φ θ ( z t , 0 ) , x ^ = D e c o d e r ( z ^ ) (4) z={\rm Encoder}(x),\quad z_t=\sqrt{\overline{\alpha}_t}z+\sqrt{1-\overline{\alpha}t}\epsilon,\quad \hat{z}=\Phi{\theta}(z_t,0),\quad \hat{x}={\rm Decoder}(\hat{z})\tag{4} z=Encoder(x),zt=αt z+1−αt ϵ,z^=Φθ(zt,0),x^=Decoder(z^)(4)
modification of the algorithm

independently adding random noise to the original image twice and then comparing the differences between the two restored images x ^ 1 \hat{x}_1 x^1 and x ^ 2 \hat{x}_2 x^2:
f ( x ) = 1 [ D ( x ^ 1 , x ^ 2 ) < τ ] f(x)=1[D(\hat{x}_1,\hat{x}_2)<\tau] f(x)=1[D(x^1,x^2)<τ]

Experiments

Evaluation Metrics
  1. AUC
  2. ASR
  3. TPR@1%FPR
same experiment's setup in previous papers [5, 18].
target model DDIM Stable Diffusion
version 《Are diffusion models vulnerable to membership inference attacks?》 original:stable diffusion-v1-5 provided by Huggingface
dataset CIFAR10/100,STL10-Unlabeled,Tiny-Imagenet member set:LAION-5B,corresponding 500 images from LAION-5;non-member set:COCO2017-val,500 images from DALL-E3
T 1000 1000
k 100 10
baseline methods [5]Are diffusion models vulnerable to membership inference attacks?: SecMIA [18]An efficient membership inference attack for the diffusion model by proximal initialization. [28]Membership inference attacks against diffusion models
publication International Conference on Machine Learning arXiv preprint 2023 IEEE Security and Privacy Workshops (SPW)
Ablation Studies
  1. The impact of average numbers
  2. The impact of diffusion steps
  3. The impact of sampling intervals
相关推荐
浩浩测试一下5 分钟前
SQL注入高级绕过手法汇总 重点
数据库·sql·安全·web安全·网络安全·oracle·安全架构
谈不譚网安41 分钟前
CSRF请求伪造
前端·网络安全·csrf
nenchoumi31191 小时前
VLA 论文精读(十六)FP3: A 3D Foundation Policy for Robotic Manipulation
论文阅读·人工智能·笔记·学习·vln
JM丫2 小时前
PWNOS:2.0(vulnhub靶机)
网络安全
何大春4 小时前
【视频时刻检索】Text-Video Retrieval via Multi-Modal Hypergraph Networks 论文阅读
论文阅读·深度学习·神经网络·计算机视觉·视觉检测·论文笔记
半路_出家ren4 小时前
流量抓取工具(wireshark)
网络·网络协议·测试工具·网络安全·wireshark·流量抓取工具
ALe要立志成为web糕手6 小时前
[BJDCTF2020]EzPHP
web安全·网络安全·php·ctf
自由鬼7 小时前
开源漏洞扫描器:OpenVAS
运维·服务器·安全·网络安全·开源·漏洞管理
TazmiDev8 小时前
2025 XYCTF ezsql 详细教程wp
web安全·网络安全·ctf·sql注入·布尔盲注
王上上8 小时前
【论文阅读25】-滑坡时间预测-PFTF
论文阅读