《Towards Black-Box Membership Inference Attack for Diffusion Models》论文笔记

《Towards Black-Box Membership Inference Attack for Diffusion Models》

Abstract

  1. 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击------copyright protection
  2. 不需要访问内部模型组件的新型黑盒攻击方法
  3. 展示了在评估 DALL-E 生成的数据集方面的卓越性能。

作者主张

previous methods are not yet ready for copyright protection in diffusion models.

Contributions(文章里有三点,我觉得只有两点)

  1. ReDiffuse:using the model's variation API to alter an image and compare it with the original one.
  2. A new MIA evaluation dataset:use the image titles from LAION-5B as prompts for DALL-E's API [31] to generate images of the same contents but different styles.

Algorithm Design

target model:DDIM

为什么要强行引入一个版权保护的概念???

定义black-box variation API

x ^ = V θ ( x , t ) \hat{x}=V_{\theta}(x,t) x^=Vθ(x,t)

细节如下:

总结为: x x x加噪变为 x t x_t xt,再通过DDIM连续降噪变为 x ^ \hat{x} x^

intuition

Our key intuition comes from the reverse SDE dynamics in continuous diffusion models.

one simplified form of the reverse SDE (i.e., the denoise step)
X t = ( X t / 2 − ∇ x log ⁡ p ( X t ) ) + d W t , t ∈ [ 0 , T ] (3) X_t=(X_t/2-\nabla_x\log p(X_t))+dW_t,t\in[0,T]\tag{3} Xt=(Xt/2−∇xlogp(Xt))+dWt,t∈[0,T](3)

The key guarantee is that when the score function is learned for a data point x, then the reconstructed image x ^ i \hat{x}_i x^i is an unbiased estimator of x x x.(算是过拟合的另一种说法吧)

Hence,averaging over multiple independent samples x ^ i \hat{x}_i x^i would greatly reduce the estimation error (see Theorem 1).

On the other hand, for a non-member image x ′ x' x′, the unbiasedness of the denoised image is not guaranteed.

details of algorithm:

  1. independently apply the black-box variation API n times with our target image x as input
  2. average the output images
  3. compare the average result x ^ \hat{x} x^ with the original image.

evaluate the difference between the images using an indicator function:
f ( x ) = 1 [ D ( x , x ^ ) < τ ] f(x)=1[D(x,\hat{x})<\tau] f(x)=1[D(x,x^)<τ]

A sample is classified to be in the training set if D ( x , x ^ ) D(x,\hat{x}) D(x,x^) is smaller than a threshold τ \tau τ ( D ( x , x ^ ) D(x,\hat{x}) D(x,x^) represents the difference between the two images)

ReDiffuse
Theoretical Analysis

什么是sampling interval???

MIA on Latent Diffusion Models

泛化到latent diffusion model,即Stable Diffusion

ReDiffuse+

variation API for stable diffusion is different from DDIM, as it includes the encoder-decoder process.
z = E n c o d e r ( x ) , z t = α ‾ t z + 1 − α ‾ t ϵ , z ^ = Φ θ ( z t , 0 ) , x ^ = D e c o d e r ( z ^ ) (4) z={\rm Encoder}(x),\quad z_t=\sqrt{\overline{\alpha}_t}z+\sqrt{1-\overline{\alpha}t}\epsilon,\quad \hat{z}=\Phi{\theta}(z_t,0),\quad \hat{x}={\rm Decoder}(\hat{z})\tag{4} z=Encoder(x),zt=αt z+1−αt ϵ,z^=Φθ(zt,0),x^=Decoder(z^)(4)
modification of the algorithm

independently adding random noise to the original image twice and then comparing the differences between the two restored images x ^ 1 \hat{x}_1 x^1 and x ^ 2 \hat{x}_2 x^2:
f ( x ) = 1 [ D ( x ^ 1 , x ^ 2 ) < τ ] f(x)=1[D(\hat{x}_1,\hat{x}_2)<\tau] f(x)=1[D(x^1,x^2)<τ]

Experiments

Evaluation Metrics
  1. AUC
  2. ASR
  3. TPR@1%FPR
same experiment's setup in previous papers [5, 18].
target model DDIM Stable Diffusion
version 《Are diffusion models vulnerable to membership inference attacks?》 original:stable diffusion-v1-5 provided by Huggingface
dataset CIFAR10/100,STL10-Unlabeled,Tiny-Imagenet member set:LAION-5B,corresponding 500 images from LAION-5;non-member set:COCO2017-val,500 images from DALL-E3
T 1000 1000
k 100 10
baseline methods [5]Are diffusion models vulnerable to membership inference attacks?: SecMIA [18]An efficient membership inference attack for the diffusion model by proximal initialization. [28]Membership inference attacks against diffusion models
publication International Conference on Machine Learning arXiv preprint 2023 IEEE Security and Privacy Workshops (SPW)
Ablation Studies
  1. The impact of average numbers
  2. The impact of diffusion steps
  3. The impact of sampling intervals
相关推荐
人衣aoa8 小时前
PG靶机 - Pelican
web安全·网络安全·渗透测试·内网渗透
lingggggaaaa8 小时前
小迪安全v2023学习笔记(六十一讲)—— 持续更新中
笔记·学习·安全·web安全·网络安全·反序列化
有Li9 小时前
关注与优化:用于骨龄评估的交互式关键点定位与颈椎定量分析|文献速递-深度学习人工智能医疗图像
论文阅读·医学生
运维行者_10 小时前
使用Applications Manager进行 Apache Solr 监控
运维·网络·数据库·网络安全·云计算·apache·solr
挨踢攻城14 小时前
IT资讯 | VMware ESXi高危漏洞影响国内服务器
安全·web安全·网络安全·vmware·虚拟化技术·厦门微思网络·vmware esxi高危漏洞
AustinCyy1 天前
【论文笔记】DOC: Improving Long Story Coherence With Detailed Outline Control
论文阅读·nlp
weixin_443290691 天前
【论文阅读-Part1】PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
大数据·论文阅读
菜根Sec1 天前
Sqli-labs靶场搭建及报错处理
web安全·网络安全·渗透测试·sql注入·网络安全靶场
浩浩测试一下2 天前
02高级语言逻辑结构到汇编语言之逻辑结构转换 if (...) {...} else {...} 结构
汇编·数据结构·数据库·redis·安全·网络安全·缓存
啥都想学点3 天前
Windows基础概略——第一阶段
网络安全