《Towards Black-Box Membership Inference Attack for Diffusion Models》论文笔记

《Towards Black-Box Membership Inference Attack for Diffusion Models》

Abstract

  1. 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击------copyright protection
  2. 不需要访问内部模型组件的新型黑盒攻击方法
  3. 展示了在评估 DALL-E 生成的数据集方面的卓越性能。

作者主张

previous methods are not yet ready for copyright protection in diffusion models.

Contributions(文章里有三点,我觉得只有两点)

  1. ReDiffuse:using the model's variation API to alter an image and compare it with the original one.
  2. A new MIA evaluation dataset:use the image titles from LAION-5B as prompts for DALL-E's API [31] to generate images of the same contents but different styles.

Algorithm Design

target model:DDIM

为什么要强行引入一个版权保护的概念???

定义black-box variation API

x ^ = V θ ( x , t ) \hat{x}=V_{\theta}(x,t) x^=Vθ(x,t)

细节如下:

总结为: x x x加噪变为 x t x_t xt,再通过DDIM连续降噪变为 x ^ \hat{x} x^

intuition

Our key intuition comes from the reverse SDE dynamics in continuous diffusion models.

one simplified form of the reverse SDE (i.e., the denoise step)
X t = ( X t / 2 − ∇ x log ⁡ p ( X t ) ) + d W t , t ∈ [ 0 , T ] (3) X_t=(X_t/2-\nabla_x\log p(X_t))+dW_t,t\in[0,T]\tag{3} Xt=(Xt/2−∇xlogp(Xt))+dWt,t∈[0,T](3)

The key guarantee is that when the score function is learned for a data point x, then the reconstructed image x ^ i \hat{x}_i x^i is an unbiased estimator of x x x.(算是过拟合的另一种说法吧)

Hence,averaging over multiple independent samples x ^ i \hat{x}_i x^i would greatly reduce the estimation error (see Theorem 1).

On the other hand, for a non-member image x ′ x' x′, the unbiasedness of the denoised image is not guaranteed.

details of algorithm:

  1. independently apply the black-box variation API n times with our target image x as input
  2. average the output images
  3. compare the average result x ^ \hat{x} x^ with the original image.

evaluate the difference between the images using an indicator function:
f ( x ) = 1 [ D ( x , x ^ ) < τ ] f(x)=1[D(x,\hat{x})<\tau] f(x)=1[D(x,x^)<τ]

A sample is classified to be in the training set if D ( x , x ^ ) D(x,\hat{x}) D(x,x^) is smaller than a threshold τ \tau τ ( D ( x , x ^ ) D(x,\hat{x}) D(x,x^) represents the difference between the two images)

ReDiffuse
Theoretical Analysis

什么是sampling interval???

MIA on Latent Diffusion Models

泛化到latent diffusion model,即Stable Diffusion

ReDiffuse+

variation API for stable diffusion is different from DDIM, as it includes the encoder-decoder process.
z = E n c o d e r ( x ) , z t = α ‾ t z + 1 − α ‾ t ϵ , z ^ = Φ θ ( z t , 0 ) , x ^ = D e c o d e r ( z ^ ) (4) z={\rm Encoder}(x),\quad z_t=\sqrt{\overline{\alpha}_t}z+\sqrt{1-\overline{\alpha}t}\epsilon,\quad \hat{z}=\Phi{\theta}(z_t,0),\quad \hat{x}={\rm Decoder}(\hat{z})\tag{4} z=Encoder(x),zt=αt z+1−αt ϵ,z^=Φθ(zt,0),x^=Decoder(z^)(4)
modification of the algorithm

independently adding random noise to the original image twice and then comparing the differences between the two restored images x ^ 1 \hat{x}_1 x^1 and x ^ 2 \hat{x}_2 x^2:
f ( x ) = 1 [ D ( x ^ 1 , x ^ 2 ) < τ ] f(x)=1[D(\hat{x}_1,\hat{x}_2)<\tau] f(x)=1[D(x^1,x^2)<τ]

Experiments

Evaluation Metrics
  1. AUC
  2. ASR
  3. TPR@1%FPR
same experiment's setup in previous papers [5, 18].
target model DDIM Stable Diffusion
version 《Are diffusion models vulnerable to membership inference attacks?》 original:stable diffusion-v1-5 provided by Huggingface
dataset CIFAR10/100,STL10-Unlabeled,Tiny-Imagenet member set:LAION-5B,corresponding 500 images from LAION-5;non-member set:COCO2017-val,500 images from DALL-E3
T 1000 1000
k 100 10
baseline methods [5]Are diffusion models vulnerable to membership inference attacks?: SecMIA [18]An efficient membership inference attack for the diffusion model by proximal initialization. [28]Membership inference attacks against diffusion models
publication International Conference on Machine Learning arXiv preprint 2023 IEEE Security and Privacy Workshops (SPW)
Ablation Studies
  1. The impact of average numbers
  2. The impact of diffusion steps
  3. The impact of sampling intervals
相关推荐
Neolnfra3 小时前
陇剑杯2021-wifi题目解析
网络·安全·web安全·网络安全·系统安全·密码学·csrf
wha the fuck4044 小时前
(渗透脚本)TCP创建连接脚本----解题----极客大挑战2019HTTP
python·网络协议·tcp/ip·网络安全·脚本书写
CV-杨帆4 小时前
论文阅读:arxiv 2025 DeepSeek-R1 Thoughtology: Let‘s think about LLM Reasoning
论文阅读
QFIUNE6 小时前
【文献阅读】DP-Site:一种基于双重深度学习的蛋白质-肽相互作用位点预测方法
论文阅读
白帽黑客-晨哥6 小时前
网络安全怎么考公?
web安全·网络安全·信息安全·渗透测试·考公
白帽黑客-晨哥7 小时前
湖南网安基地:构筑网络安全人才培养新高地
web安全·网络安全·渗透测试·就业·湖南网安基地·安服
网安INF7 小时前
AKA协议认证与密钥协商的核心原理
网络协议·安全·网络安全·密码学·aka
bleach-7 小时前
buuctf系列解题思路祥讲--[网鼎杯 2020 青龙组]AreUSerialz1——文件包含漏洞,PHP代码审计,php伪协议,php反序列化
开发语言·安全·web安全·网络安全·渗透测试·php
云计算练习生7 小时前
渗透测试行业术语扫盲(第十七篇)—— 合规、开发与职业类
网络·网络安全·信息安全·渗透测试术语·网络安全规范
Neolnfra7 小时前
SMB、FTP、MySQL... 配置不当,即是漏洞
linux·数据库·mysql·安全·网络安全·系统安全·安全架构