U版YOLO V8项目使用-Win11系统

U版YOLO V8项目使用-Win11系统

创建激活虚拟环境

  1. 为Yolov8创建所需要的虚拟环境

    conda create --name Yolov8 python=3.11.9

  1. 激活YOLO v8虚拟环境

    activate Yolov8

  2. 通过桌面程序查看创建的结果

拉取项目源码

https://github.com/ultralytics/ultralytics?tab=readme-ov-file

拉取项目到本地并使用Pycharm打开项目。

复制代码
git clone https://github.com/ultralytics/ultralytics.git

安装依赖

  • 根据官网的提示使用可编辑模式安装所需要的库

    Clone the ultralytics repository

    git clone https://github.com/ultralytics/ultralytics

    Navigate to the cloned directory

    cd ultralytics

    Install the package in editable mode for development

    pip install -e .

预测与训练

输入命令执行测试文件使用命令行的方式执行单张图片的检测命令。

yolo predict model=yolov8s.pt source=D:/Git-res/DeepLearing/DL_01/YOLOV8/ultralytics-8.2.60/ultralytics/assets/bus.jpg

(Yolov8) D:\Git-res\DeepLearing\DL_01\YOLOV8\ultralytics-8.2.60

yolo predict model=yolov8s.pt source=D:/Git-res/DeepLearing/DL_01/YOLOV8/ultralytics-8.2.60/ultralytics/assets/bus.jpg

Downloading https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt to 'yolov8s.pt'...

100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 21.5M/21.5M [00:13<00:00, 1.70MB/s]

Ultralytics YOLOv8.2.60 🚀 Python-3.11.9 torch-2.3.1+cu118 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB)

YOLOv8s summary (fused): 168 layers, 11,156,544 parameters, 0 gradients, 28.6 GFLOPs

image 1/1 D:\Git-res\DeepLearing\DL_01\YOLOV8\ultralytics-8.2.60\ultralytics\assets\bus.jpg: 640x480 4 persons, 1 bus, 103.3ms

Speed: 9.5ms preprocess, 103.3ms inference, 60.7ms postprocess per image at shape (1, 3, 640, 480)

Results saved to runs\detect\predict

💡 Learn more at https://docs.ultralytics.com/modes/predict

使用coco128数据集和官网提供的命令模式进行训练。

官方提供的三种常用的训练命令。

复制代码
# Build a new model from YAML and start training from scratch
yolo detect train data=coco8.yaml model=yolov8n.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo detect train data=coco8.yaml model=yolov8n.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo detect train data=coco8.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640

普通的训练模式

yolo detect train data=D:/ultralytics/ultralytics/cfg/datasets/VOC-new.yaml model=yolov8s.pt epochs=50 imgsz=640 batch=8 workers=4

断点续存模式

yolo detect train data=D:/ultralytics/ultralytics/cfg/datasets/VOC-new.yaml model=D:/ultralytics/runs/detect/train/weights/best.pt epochs=300 imgsz=640 batch=16 workers=4 resume

根据上面提供的参考格式:我们使用项目中默认提供好了的coco128.yaml文件进行训练。(方便起见训练轮数设置为50batch设置为8进行训练)

复制代码
yolo detect train data=coco128.yaml  model=yolov8n.pt epochs=50 imgsz=640 batch=8 workers=4

新版的项目会自己下载数据集以及需要的预训练模型。之后就开始进行训练。

我自己在训练的时候发现,在训练的过程中当训练到41轮的时候会关闭数据增强训练。

评估训练出的网络模型

在官方文档中给出了两种模型评估方式。

  1. yolo detect val model=yolov8n.pt # val official model yolo detect val model=path/to/best.pt # val custom model

  2. 带有参数的模型评估方式

    yolo val model=yolov8n.pt data=coco8.yaml imgsz=640 batch=16 conf=0.25 iou=0.6 device=0

参考格式:

复制代码
yolo detect val model=D:\Git-res\DeepLearing\DL_01\YOLOV8\ultralytics-8.2.60\runs\detect\train\weights\best.pt
data=D:/ultralytics/ultralytics/cfg/datasets/VOC-new.yaml

个人实验:我们在coco8数据集上进行实验验证集的过程。使用的命令行命令如下所示。

复制代码
yolo detect val model=D:\Git-res\DeepLearing\DL_01\YOLOV8\ultralytics-8.2.60\runs\detect\train\weights\best.pt data=coco8.yaml

总结以上就是使用命令行cli方式跑YOLOV8代码的执行流程。

相关推荐
钓了猫的鱼儿5 小时前
无人机航拍数据集|第34期 无人机咖啡成熟度目标检测YOLO数据集3224张yolov11/yolov8/yolov5可训练
yolo·目标检测·无人机·猫脸码客·无人机航拍数据集·无人机咖啡成熟度
蜀中廖化18 小时前
基于YOLOv11训练无人机视角Visdrone2019数据集
yolo·无人机
大学生毕业题目19 小时前
毕业项目推荐:28-基于yolov8/yolov5/yolo11的电塔危险物品检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·cnn·pyqt·电塔·危险物品
程序猿小D1 天前
【完整源码+数据集+部署教程】脑部CT图像分割系统源码和数据集:改进yolo11-CSwinTransformer
python·yolo·计算机视觉·数据集·yolo11·脑部ct图像分割
2501_924877351 天前
智慧零售漏扫率↓79%!陌讯多模态融合算法在智能收银与货架管理的实战解析
大数据·人工智能·算法·目标检测·边缘计算·零售
AI浩1 天前
YOLOv8-SMOT:一种高效鲁棒的实时小目标跟踪框架:基于切片辅助训练与自适应关联
人工智能·yolo·目标跟踪
xw33734095641 天前
目标检测基础
人工智能·yolo
竹子_231 天前
《零基础入门AI: 目标检测基础知识》
人工智能·python·目标检测·计算机视觉
Sugar_pp1 天前
【目标检测】论文阅读3
论文阅读·人工智能·目标检测
Sugar_pp1 天前
【目标检测】论文阅读4
论文阅读·人工智能·目标检测