go 中 高并发下的内存模型与垃圾回收

go 的栈为什么在堆上

内存模型和垃圾回收和 go 的高并发特性是息息相关

go 的协程栈的作用:

  • 协程的执行路径
  • 局部变量:
    • 方法内部声明的局部变量,如果只是在内部使用的话,会记录在协程栈上
  • 方法中的参数传递
  • 函数返回值的传递

go 的协程栈位于 go 的堆内存上,栈内存的释放也是通过 gc 来释放的

go 的堆内存位于操作系统虚拟内存上(操作系统会为每个进程分配一个虚拟内存)

协程栈不够用了咋办

协程栈初始空间大概 2~4kb,局部变量太大,栈帧太多这两种情况会造成协程栈空间不够用

逃逸分析就是把一些放在协程栈上的变量放到堆上

不是所有的变量都会放在协程栈上:

  • 栈帧回收之后,需要继续使用的变量
  • 本地变量太大,栈帧放不下

有三种逃逸:

  • 指针逃逸
    • 函数返回了对象的指针
  • 空接口逃逸
    • 如果函数的参数类型是 interface{}(因为 interface{} 类型的函数往往会使用反射)
    • 空接口作为参数不会导致实参逃逸,但方法中使用反射的手段就会导致实参逃逸
  • 大变量逃逸
    • 64 位的机器中,一般超过 64k 的变量会逃逸

栈帧太多导致栈空间不够用

协程在函数调用前会先判断栈空间(morestack)是否足够,如果栈空间不够,就需要进行扩容

栈空间扩容有两种方式:

  • 分段栈(go1.13 之前)
    • 不够了开辟一块新的栈,但是如果下一个函数做完之后,又要回到老的栈帧上(之前开辟的会被释放),又调用一个新的函数,就需要开辟一个新的栈帧,这个函数处理完之后,又要回到老的栈帧上(这块新开辟的栈帧会被释放)
    • 优点:没有空间浪费
    • 缺点:栈指针会在不连续的空间来回跳转
  • 连续栈(go1.14 之后)
    • 当栈空间不够时,开辟一块新的栈空间,把老的栈里面的内容都拷贝过来
      • 当栈空间不足时,扩容为原来的 2
      • 当栈空间使用率不足原来的 1/4 时,缩容为原来的 1/2
    • 优点:空间一直连续
    • 缺点:伸缩时开销比较大

go 的堆内存结构

go 模仿了 TCmalloc 建立了堆内存架构

操作系统会给应用提供虚拟内存空间(不是 windows 的虚拟内存),因为操作系统是不允许进程去碰物理内存,所以操作系统会给进程提供虚拟内存空间

linxu 可以通过 mmapmadvice 来分配

go 是通过 heapArena 来获取虚拟内存的,go 每次获取虚拟内存为 64mb,最多能够申请 4194304 个虚拟内存单元(2^22)

内存单元也叫 heapArena,所有的 heapArena 组成了mheap(go 堆内存)

heapArena 描述了一个 64mb 的虚拟内存空间

go 复制代码
// A heapArena stores metadata for a heap arena. heapArenas are stored
// outside of the Go heap and accessed via the mheap_.arenas index.
type heapArena struct {
  // bitmap stores the pointer/scalar bitmap for the words in
  // this arena. See mbitmap.go for a description.
  // This array uses 1 bit per word of heap, or 1.6% of the heap size (for 64-bit).
  bitmap [heapArenaBitmapWords]uintptr
}

所有的 heapArena 组成了mheap

go 复制代码
// Main malloc heap.
// The heap itself is the "free" and "scav" treaps,
// but all the other global data is here too.
//
// mheap must not be heap-allocated because it contains mSpanLists,
// which must not be heap-allocated.
type mheap struct {
  // arenas is the heap arena map. It points to the metadata for
  // the heap for every arena frame of the entire usable virtual
  // address space.
  //
  // Use arenaIndex to compute indexes into this array.
  //
  // For regions of the address space that are not backed by the
  // Go heap, the arena map contains nil.
  //
  // Modifications are protected by mheap_.lock. Reads can be
  // performed without locking; however, a given entry can
  // transition from nil to non-nil at any time when the lock
  // isn't held. (Entries never transitions back to nil.)
  //
  // In general, this is a two-level mapping consisting of an L1
  // map and possibly many L2 maps. This saves space when there
  // are a huge number of arena frames. However, on many
  // platforms (even 64-bit), arenaL1Bits is 0, making this
  // effectively a single-level map. In this case, arenas[0]
  // will never be nil.
  arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena

  // central free lists for small size classes.
  // the padding makes sure that the mcentrals are
  // spaced CacheLinePadSize bytes apart, so that each mcentral.lock
  // gets its own cache line.
  // central is indexed by spanClass.
  central [numSpanClasses]struct {
    mcentral mcentral
    pad      [(cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize) % cpu.CacheLinePadSize]byte
  }
}

heapArena 内存分配------线性分配

线性分配就是按照对象或者值的大小依此往后排列,如下所示

如果垃圾回收,删除了一些对象或者值,如下所示

如果再次分配内存,会从上次分配的位置开始分配,这是线性分配,如下所示

把这些空挡统计起来,做一个类似链表的数据结构,如果有一个小的对象就可以放进来,那如果有一个比较大的对象,还是要放到后面去

所以在内存中,由于对象分配和回收就会产生很多碎片,大对象是放不下去的,只能放一些小对象

go 为了解决这个问题,使用了一种分级分配的方案

goheapArena 切成了很多小块,给对象分配能放进去的最小的块

这个分成一个个小的块,相同的小块组成的一组成为 mspango 称为 mspan

每个 mspann 个相同大小的格子

go 中一共有 67mspan

第一级别最小的格子是 8 bit,一共有 1024 个,大小有 8k,最大浪费 87.50% 的空间

具体的对应关系如下,一共有 68(包括 0 级)

class bytes/obj bytes/span objects tail waste max waste min align
1 8 8192 1024 0 87.50% 8
2 16 8192 512 0 43.75% 16
3 24 8192 341 0 29.24% 8
4 32 8192 256 0 21.88% 32
5 48 8192 170 32 31.52% 16
6 64 8192 128 0 23.44% 64
7 80 8192 102 32 19.07% 16
8 96 8192 85 32 15.95% 32
9 112 8192 73 16 13.56% 16
10 128 8192 64 0 11.72% 128
11 144 8192 56 128 11.82% 16
12 160 8192 51 32 9.73% 32
13 176 8192 46 96 9.59% 16
14 192 8192 42 128 9.25% 64
15 208 8192 39 80 8.12% 16
16 224 8192 36 128 8.15% 32
17 240 8192 34 32 6.62% 16
18 256 8192 32 0 5.86% 256
19 288 8192 28 128 12.16% 32
20 320 8192 25 192 11.80% 64
21 352 8192 23 96 9.88% 32
22 384 8192 21 128 9.51% 128
23 416 8192 19 288 10.71% 32
24 448 8192 18 128 8.37% 64
25 480 8192 17 32 6.82% 32
26 512 8192 16 0 6.05% 512
27 576 8192 14 128 12.33% 64
28 640 8192 12 512 15.48% 128
29 704 8192 11 448 13.93% 64
30 768 8192 10 512 13.94% 256
31 896 8192 9 128 15.52% 128
32 1024 8192 8 0 12.40% 1024
33 1152 8192 7 128 12.41% 128
34 1280 8192 6 512 15.55% 256
35 1408 16384 11 896 14.00% 128
36 1536 8192 5 512 14.00% 512
37 1792 16384 9 256 15.57% 256
38 2048 8192 4 0 12.45% 2048
39 2304 16384 7 256 12.46% 256
40 2688 8192 3 128 15.59% 128
41 3072 24576 8 0 12.47% 1024
42 3200 16384 5 384 6.22% 128
43 3456 24576 7 384 8.83% 128
44 4096 8192 2 0 15.60% 4096
45 4864 24576 5 256 16.65% 256
46 5376 16384 3 256 10.92% 256
47 6144 24576 4 0 12.48% 2048
48 6528 32768 5 128 6.23% 128
49 6784 40960 6 256 4.36% 128
50 6912 49152 7 768 3.37% 256
51 8192 8192 1 0 15.61% 8192
52 9472 57344 6 512 14.28% 256
53 9728 49152 5 512 3.64% 512
54 10240 40960 4 0 4.99% 2048
55 10880 32768 3 128 6.24% 128
56 12288 24576 2 0 11.45% 4096
57 13568 40960 3 256 9.99% 256
58 14336 57344 4 0 5.35% 2048
59 16384 16384 1 0 12.49% 8192
60 18432 73728 4 0 11.11% 2048
61 19072 57344 3 128 3.57% 128
62 20480 40960 2 0 6.87% 4096
63 21760 65536 3 256 6.25% 256
64 24576 24576 1 0 11.45% 8192
65 27264 81920 3 128 10.00% 128
66 28672 57344 2 0 4.91% 4096
67 32768 32768 1 0 12.50% 8192

mspan 是一个链表,next 指向下一个 mspan 的地址,prev 指向上一个 mspan 的地址

heapArena 内部保存着 spans 数组

go 复制代码
type mspan struct {
  next *mspan     // next span in list, or nil if none
  prev *mspan     // previous span in list, or nil if none
}

type heapArena struct {
  // spans maps from virtual address page ID within this arena to *mspan.
  // For allocated spans, their pages map to the span itself.
  // For free spans, only the lowest and highest pages map to the span itself.
  // Internal pages map to an arbitrary span.
  // For pages that have never been allocated, spans entries are nil.
  //
  // Modifications are protected by mheap.lock. Reads can be
  // performed without locking, but ONLY from indexes that are
  // known to contain in-use or stack spans. This means there
  // must not be a safe-point between establishing that an
  // address is live and looking it up in the spans array.
  spans [pagesPerArena]*mspan
}

每一个 heapArena 不是有所有的 mspan,它是根据对象需要去开辟的,所以就需要一个中心索引 mcentral

136mcentral 结构体,其中 68 个组需要 GC 扫描的 mspan68 个组不需要 GC 扫描的 mspan

mcentral 就是把 heapArena 中某一级的 span 用链表串起来,需要 gc 的放在需要的 gc 的列表中,不需要 gc 的放在不需要的 gc 的列表中

go 复制代码
// Central list of free objects of a given size.
type mcentral struct {
  _         sys.NotInHeap
  spanclass spanClass

  // partial and full contain two mspan sets: one of swept in-use
  // spans, and one of unswept in-use spans. These two trade
  // roles on each GC cycle. The unswept set is drained either by
  // allocation or by the background sweeper in every GC cycle,
  // so only two roles are necessary.
  //
  // sweepgen is increased by 2 on each GC cycle, so the swept
  // spans are in partial[sweepgen/2%2] and the unswept spans are in
  // partial[1-sweepgen/2%2]. Sweeping pops spans from the
  // unswept set and pushes spans that are still in-use on the
  // swept set. Likewise, allocating an in-use span pushes it
  // on the swept set.
  //
  // Some parts of the sweeper can sweep arbitrary spans, and hence
  // can't remove them from the unswept set, but will add the span
  // to the appropriate swept list. As a result, the parts of the
  // sweeper and mcentral that do consume from the unswept list may
  // encounter swept spans, and these should be ignored.
  partial [2]spanSet // list of spans with a free object
  full    [2]spanSet // list of spans with no free objects
}

mcentral 好是好,但是有性能问题,问题在于如果要修改某一个 span,需要上锁,上锁就涉及到了锁竞争问题

在讲协程的时候提到,每个协程有一个本地列队,我们在这个本地队列中给它开辟一个 mcache 缓存,这样就减少了锁竞争

mcache 结构如下

go 复制代码
// Per-thread (in Go, per-P) cache for small objects.
// This includes a small object cache and local allocation stats.
// No locking needed because it is per-thread (per-P).
//
// mcaches are allocated from non-GC'd memory, so any heap pointers
// must be specially handled.
type mcache struct {
  _ sys.NotInHeap

  // The following members are accessed on every malloc,
  // so they are grouped here for better caching.
  nextSample uintptr // trigger heap sample after allocating this many bytes
  scanAlloc  uintptr // bytes of scannable heap allocated

  // Allocator cache for tiny objects w/o pointers.
  // See "Tiny allocator" comment in malloc.go.

  // tiny points to the beginning of the current tiny block, or
  // nil if there is no current tiny block.
  //
  // tiny is a heap pointer. Since mcache is in non-GC'd memory,
  // we handle it by clearing it in releaseAll during mark
  // termination.
  //
  // tinyAllocs is the number of tiny allocations performed
  // by the P that owns this mcache.
  tiny       uintptr
  tinyoffset uintptr
  tinyAllocs uintptr

  // The rest is not accessed on every malloc.

  alloc [numSpanClasses]*mspan // spans to allocate from, indexed by spanClass

  stackcache [_NumStackOrders]stackfreelist

  // flushGen indicates the sweepgen during which this mcache
  // was last flushed. If flushGen != mheap_.sweepgen, the spans
  // in this mcache are stale and need to the flushed so they
  // can be swept. This is done in acquirep.
  flushGen atomic.Uint32
}

p 结构体中有一个 mcache 的属性

go 复制代码
type p struct {
  mcache      *mcache
}

GO 的是如何分配堆内存的?

对象分级:

  • Tiny 微对象(0, 16B)无指针
  • Small 小对象[16B, 32KB]
  • Large 大对象(32K, +∞)

微小对象分配至普通的 mspan(1~67),大对象量身定做 mspan(0)

微对象分配

  • mcache 中拿到 2mspan(一个 2 级的 mspan 大小是 16 字节)
  • 将多个微对象合并成一个 16Byte 存入
go 复制代码
// Allocate an object of size bytes.
// Small objects are allocated from the per-P cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
  delayedZeroing := false
  if size <= maxSmallSize {
    if noscan && size < maxTinySize {
      // Tiny allocator.
      //
      // Tiny allocator combines several tiny allocation requests
      // into a single memory block. The resulting memory block
      // is freed when all subobjects are unreachable. The subobjects
      // must be noscan (don't have pointers), this ensures that
      // the amount of potentially wasted memory is bounded.
      //
      // Size of the memory block used for combining (maxTinySize) is tunable.
      // Current setting is 16 bytes, which relates to 2x worst case memory
      // wastage (when all but one subobjects are unreachable).
      // 8 bytes would result in no wastage at all, but provides less
      // opportunities for combining.
      // 32 bytes provides more opportunities for combining,
      // but can lead to 4x worst case wastage.
      // The best case winning is 8x regardless of block size.
      //
      // Objects obtained from tiny allocator must not be freed explicitly.
      // So when an object will be freed explicitly, we ensure that
      // its size >= maxTinySize.
      //
      // SetFinalizer has a special case for objects potentially coming
      // from tiny allocator, it such case it allows to set finalizers
      // for an inner byte of a memory block.
      //
      // The main targets of tiny allocator are small strings and
      // standalone escaping variables. On a json benchmark
      // the allocator reduces number of allocations by ~12% and
      // reduces heap size by ~20%.
      off := c.tinyoffset
      // Align tiny pointer for required (conservative) alignment.
      if size&7 == 0 {
        off = alignUp(off, 8)
      } else if goarch.PtrSize == 4 && size == 12 {
        // Conservatively align 12-byte objects to 8 bytes on 32-bit
        // systems so that objects whose first field is a 64-bit
        // value is aligned to 8 bytes and does not cause a fault on
        // atomic access. See issue 37262.
        // TODO(mknyszek): Remove this workaround if/when issue 36606
        // is resolved.
        off = alignUp(off, 8)
      } else if size&3 == 0 {
        off = alignUp(off, 4)
      } else if size&1 == 0 {
        off = alignUp(off, 2)
      }
      if off+size <= maxTinySize && c.tiny != 0 {
        // The object fits into existing tiny block.
        x = unsafe.Pointer(c.tiny + off)
        c.tinyoffset = off + size
        c.tinyAllocs++
        mp.mallocing = 0
        releasem(mp)
        return x
      }
      // Allocate a new maxTinySize block.
      span = c.alloc[tinySpanClass]
      v := nextFreeFast(span)
      if v == 0 {
        v, span, shouldhelpgc = c.nextFree(tinySpanClass)
      }
      x = unsafe.Pointer(v)
      (*[2]uint64)(x)[0] = 0
      (*[2]uint64)(x)[1] = 0
      // See if we need to replace the existing tiny block with the new one
      // based on amount of remaining free space.
      if !raceenabled && (size < c.tinyoffset || c.tiny == 0) {
        // Note: disabled when race detector is on, see comment near end of this function.
        c.tiny = uintptr(x)
        c.tinyoffset = size
      }
      size = maxTinySize
    }
  }
  return x
}

小对象分配

go 复制代码
// Allocate an object of size bytes.
// Small objects are allocated from the per-P cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
  delayedZeroing := false
  if size <= maxSmallSize {
    if !(noscan && size < maxTinySize) {
      var sizeclass uint8
      if size <= smallSizeMax-8 {
        sizeclass = size_to_class8[divRoundUp(size, smallSizeDiv)]
      } else {
        sizeclass = size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]
      }
      size = uintptr(class_to_size[sizeclass])
      spc := makeSpanClass(sizeclass, noscan)
      span = c.alloc[spc]
      v := nextFreeFast(span)
      if v == 0 {
        v, span, shouldhelpgc = c.nextFree(spc)
      }
      x = unsafe.Pointer(v)
      if needzero && span.needzero != 0 {
        memclrNoHeapPointers(x, size)
      }
    }
  }
  return x
}

mcache 的替换

  • mcache 中,每个级别的 mspan 中只有一个
  • mspan 满了之后,会从 mcentral 中换一个新的

mcentral 的扩容

  • mcentral 中,只有有限数量的 mspan
  • mspan 缺少时,会从 heapArena 开辟新的 mspan

refill 从中央的 mspan 找新的 mspan,如果中央的 mspan 满了,就扩容

go 复制代码
// refill acquires a new span of span class spc for c. This span will
// have at least one free object. The current span in c must be full.
//
// Must run in a non-preemptible context since otherwise the owner of
// c could change.
func (c *mcache) refill(spc spanClass) {
  // Return the current cached span to the central lists.
  s := c.alloc[spc]

  if uintptr(s.allocCount) != s.nelems {
    throw("refill of span with free space remaining")
  }
  if s != &emptymspan {
    // Mark this span as no longer cached.
    if s.sweepgen != mheap_.sweepgen+3 {
      throw("bad sweepgen in refill")
    }
    mheap_.central[spc].mcentral.uncacheSpan(s)

    // Count up how many slots were used and record it.
    stats := memstats.heapStats.acquire()
    slotsUsed := int64(s.allocCount) - int64(s.allocCountBeforeCache)
    atomic.Xadd64(&stats.smallAllocCount[spc.sizeclass()], slotsUsed)

    // Flush tinyAllocs.
    if spc == tinySpanClass {
      atomic.Xadd64(&stats.tinyAllocCount, int64(c.tinyAllocs))
      c.tinyAllocs = 0
    }
    memstats.heapStats.release()

    // Count the allocs in inconsistent, internal stats.
    bytesAllocated := slotsUsed * int64(s.elemsize)
    gcController.totalAlloc.Add(bytesAllocated)

    // Clear the second allocCount just to be safe.
    s.allocCountBeforeCache = 0
  }

  // Get a new cached span from the central lists.
  s = mheap_.central[spc].mcentral.cacheSpan()
  if s == nil {
    throw("out of memory")
  }

  if uintptr(s.allocCount) == s.nelems {
    throw("span has no free space")
  }

  // Indicate that this span is cached and prevent asynchronous
  // sweeping in the next sweep phase.
  s.sweepgen = mheap_.sweepgen + 3

  // Store the current alloc count for accounting later.
  s.allocCountBeforeCache = s.allocCount

  // Update heapLive and flush scanAlloc.
  //
  // We have not yet allocated anything new into the span, but we
  // assume that all of its slots will get used, so this makes
  // heapLive an overestimate.
  //
  // When the span gets uncached, we'll fix up this overestimate
  // if necessary (see releaseAll).
  //
  // We pick an overestimate here because an underestimate leads
  // the pacer to believe that it's in better shape than it is,
  // which appears to lead to more memory used. See #53738 for
  // more details.
  usedBytes := uintptr(s.allocCount) * s.elemsize
  gcController.update(int64(s.npages*pageSize)-int64(usedBytes), int64(c.scanAlloc))
  c.scanAlloc = 0

  c.alloc[spc] = s
}

大对象的分配

  • 直接从 heapArena 开辟 0 级的 mspan
  • 0 级的 mspan 为大对象定制
go 复制代码
func mallocgc(){
  if size > maxSmallSize {
    shouldhelpgc = true
    // For large allocations, keep track of zeroed state so that
    // bulk zeroing can be happen later in a preemptible context.
    span = c.allocLarge(size, noscan)
    span.freeindex = 1
    span.allocCount = 1
    size = span.elemsize
    x = unsafe.Pointer(span.base())
    if needzero && span.needzero != 0 {
      if noscan {
        delayedZeroing = true
      } else {
        memclrNoHeapPointers(x, size)
        // We've in theory cleared almost the whole span here,
        // and could take the extra step of actually clearing
        // the whole thing. However, don't. Any GC bits for the
        // uncleared parts will be zero, and it's just going to
        // be needzero = 1 once freed anyway.
      }
    }
  }
}

垃圾回收

垃圾回收有三种思路:

  • 标记-清除
    • 从根节点出发,标记所有可以到达的对象,然后清除没有标记的对象
    • 缺点:会有内存碎片
  • 标记-整理
    • 比标记清除多了一步整理,把所有的对象往前移动
    • 缺点:整理的开销比较大
  • 复制
    • 在标记清除的基础上,把存活的对象整理后复制到另外一块内存中
    • 缺点:浪费一半的内存

go 因为堆内存结构的独特优势,选择了最简单的标记-清除,找到有引用的对象,剩下的就是没有引用的对象

从哪开始找

  • 被栈上的指针引用
  • 被全局变量指针引用
  • 被寄存器中的指针引用(现在正在操作的变量)
  • 上述变量被称为 Root Set(GC Root)

通过广度优先(BFS)的方式搜索,这种分析也被称为可达性分析标记法

三色标记法:(每次扫描时,所有的对象恢复为白色)

  • 黑色:有用,已经分析扫描
    • 它自己是有用的,并且它内部的属性也都已经分析过了
  • 灰色:有用,还为分析扫描
    • 它自己已经已经分析过了,但是它内部的属性还没有分析过
  • 白色:暂时无用(最后是要被清除的)
    • 要么是还没有扫描到
    • 要么是已经扫描了,但是没有用

串行 GC 步骤

  • Stop The World,暂停所有其他协程
  • 通过可达性分析,找到无用的堆内存
  • 释放堆内存

并发垃圾回收的难点:

  • 标记阶段
    • 如果已经分析过的节点,它的内部属性释放了,同时那个释放的那个属性又被分析过的节点引用了,就会造成这个节点无法被扫描到,导致被删除
      • 删除屏障:释放的节点强制置为灰色
    • 如果已经分析过的节点,由于业务操作,在的内部新增了一个属性,因为这个节点已经被扫描过了,所以新增的属性无法被扫描到,导致被删除
      • 插入屏障:插入的节点强制置为灰色

GC 触发时机:

  • 系统定时触发
    • sysmon 定时检查,是 runtime 背后的一个循环,如果 2 分钟之内没有 GC,会强制触发
  • 用户显示触发
    • 用户调用 runtime.GC
  • 申请内存时触发

GC 优化:

  • 尽量少在堆上产生垃圾
    • 内存池化
      • 缓存性质的对象:channel 缓存区
      • 频繁创建和删除
    • 减少逃逸
      • 逃逸会使原本在栈上的对象进入堆中:fmt
      • 返回了指针而不是拷贝
    • 使用空结构体
      • 空结构体指向一个固定的地址,不占用空间,比如用 channel 传递空结构体

GC 分析工具

  • go tool pprof
  • go tool trace
  • go build -gcflags="-m"
  • GODEBUG="gctrace=1"
相关推荐
Q_192849990627 分钟前
基于Spring Boot的个人健康管理系统
java·spring boot·后端
liutaiyi828 分钟前
Redis可视化工具 RDM mac安装使用
redis·后端·macos
Q_192849990634 分钟前
基于Springcloud的智能社区服务系统
后端·spring·spring cloud
xiaocaibao77737 分钟前
Java语言的网络编程
开发语言·后端·golang
会说法语的猪2 小时前
springboot实现图片上传、下载功能
java·spring boot·后端
凡人的AI工具箱2 小时前
每天40分玩转Django:实操多语言博客
人工智能·后端·python·django·sqlite
Cachel wood2 小时前
Django REST framework (DRF)中的api_view和APIView权限控制
javascript·vue.js·后端·python·ui·django·前端框架
m0_748234082 小时前
Spring Boot教程之三十一:入门 Web
前端·spring boot·后端
想成为高手4993 小时前
国产之光--仓颉编程语言的实战案例分析
后端
编码浪子3 小时前
构建一个rust生产应用读书笔记7-确认邮件2
开发语言·后端·rust